Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos Theory and a Little Physics Predict the Outcome at the Roulette Table

04.10.2012
At first glance, a roulette table looks like a jumble of numbers and a randomly hopping little white ball.

But with a better understanding of physics and some general knowledge of the starting conditions, it may be possible to shift the odds of winning a little in your favor. According to new research published in the American Institute of Physics' journal Chaos, by knowing some of the starting conditions – such as the speed of the spin and the rotation of the ball – this game of chance starts to look a little less random.

Under normal conditions, according to the researchers, the anticipated return on a random roulette bet is -2.7 percent. By applying their calculations to a casino-grade roulette wheel and using a simple clicker device, the researchers were able to achieve an average return of 18 percent, well above what would be expected from a random bet.

With more complete information, such as monitoring by an overhead camera, the researchers were able to improve their accuracy even further. This highly intrusive scheme, however, could not be deployed under normal gambling conditions. The researchers also observed that even a slight tilt in the wheel would produce a very pronounced bias, which could be exploited to substantially improve the accuracy of their predictions.

This model, however, does not take into account the minor changes of the friction of the surfaces, the level of the wheel, or the manner in which the croupier plays the ball -- any of which would thwart the advantage of the physicist/gambler. The gambler, the researchers conclude, can rest assured that the game is on some level predictable, and therefore inherently honest.

Article: “Predicting the outcome of roulette” is published in the journal Chaos.

http://chaos.aip.org/resource/1/chaoeh/v22/i3/p033150_s1?isAuthorized=no

Authors: Michael Small (1, 2) and Chi Kong Tse (2)
(1) School of Mathematics and Statistics, The University of Western Australia
(2) Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong

Charles E. Blue | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>