Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos Theory and a Little Physics Predict the Outcome at the Roulette Table

04.10.2012
At first glance, a roulette table looks like a jumble of numbers and a randomly hopping little white ball.

But with a better understanding of physics and some general knowledge of the starting conditions, it may be possible to shift the odds of winning a little in your favor. According to new research published in the American Institute of Physics' journal Chaos, by knowing some of the starting conditions – such as the speed of the spin and the rotation of the ball – this game of chance starts to look a little less random.

Under normal conditions, according to the researchers, the anticipated return on a random roulette bet is -2.7 percent. By applying their calculations to a casino-grade roulette wheel and using a simple clicker device, the researchers were able to achieve an average return of 18 percent, well above what would be expected from a random bet.

With more complete information, such as monitoring by an overhead camera, the researchers were able to improve their accuracy even further. This highly intrusive scheme, however, could not be deployed under normal gambling conditions. The researchers also observed that even a slight tilt in the wheel would produce a very pronounced bias, which could be exploited to substantially improve the accuracy of their predictions.

This model, however, does not take into account the minor changes of the friction of the surfaces, the level of the wheel, or the manner in which the croupier plays the ball -- any of which would thwart the advantage of the physicist/gambler. The gambler, the researchers conclude, can rest assured that the game is on some level predictable, and therefore inherently honest.

Article: “Predicting the outcome of roulette” is published in the journal Chaos.

http://chaos.aip.org/resource/1/chaoeh/v22/i3/p033150_s1?isAuthorized=no

Authors: Michael Small (1, 2) and Chi Kong Tse (2)
(1) School of Mathematics and Statistics, The University of Western Australia
(2) Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong

Charles E. Blue | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>