Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chaos in the microlaser

Würzburg physicists have created a microlaser with unique properties. They have also succeeded in making the laser behave chaotically. In the future, it may be possible to use this for a new, secure form of data transmission.

Triggering chaotic behavior in the microcosm: this is what Stephan Reitzenstein and his team from the Institute of Physics at the University of Würzburg have achieved in collaboration with their Israeli colleague Ido Kanter, as reported on in the latest issue of the journal “Nature Communications”. Using a tiny laser, the researchers continually sent a fraction of the emitted light back into the laser, throwing the light emission process “out of kilter”. The microlaser then started emitting light particles (photons) in a chaotic pulse sequence.

A quantum-dot microlaser emits light that is deliberately cast back into the laser via a mirror. This disturbs the laser’s operation so much so that the emission behavior becomes chaotic. On the right, the result of a photon statistics measurement from which physicists are able to detect a chaotic pulse sequence, given that without chaos no pulses would appear. Image: Ferdinand Albert

“This chaos is extremely interesting from a fundamental physics point of view,” explains Reitzenstein. But the targeted feedback also offers application possibilities, he adds. “It might be used in the future for optical amplifiers and switches. In addition, the negative feedback of two microlasers over a long distance is likely to provide synchronization of the chaotic pulse sequence, enabling the realization of a new, secure form of data transmission.”

Microlasers made in Würzburg

The microlasers are made using a sophisticated procedure in the microstructure laboratory of the Institute of Physics at Würzburg. They look like tiny towers with a diameter of less than a tenth of a human hair, and they consist of a special sequence of extremely thin semiconductor layers. They are driven electrically using an elaborately designed ring contact.

During production, special nanostructures that can emit light – so-called quantum dots – are placed in the center of the microlasers. What makes them special? “The microlasers have been designed such that the photons emitted by the quantum dots are coupled into the lasing mode with extremely high probability and can therefore be used for very efficient laser operation,” as Reitzenstein says.

Close to the ultimate model

On account of their special design, the Würzburg microlasers can be driven with no more than a few microamperes and only around ten quantum dots. In conventional semiconductor lasers, on the other hand, pump currents in the milliampere range as well as some 1,000 to 10,000 quantum dots are needed.

“Intensive research is being conducted worldwide in order to create the ‘ultimate’ micro- or nanolaser that only contains a single quantum dot as a gain medium,” explains Reitzenstein. The Würzburg physicists have now come very close to this goal with their model.

Chaotic pulse sequence produced

Such highly sophisticated quantum dot microlasers react very sensitively to fluctuations in the quantity of light particles in the laser resonator. Even the emission of a single photon can throw the laser’s operation into confusion. The scientists turned the tables and cast the emitted light back onto the microlaser with a mirror continuously, precisely, and in a controlled fashion in order to disturb its operation.

It transpired that if the lasers emit only a few tens of nanowatts of light power, the influence of the feedback cannot be measured directly. “Instead, complex photon statistics measurements are needed to prove the expected chaotic behavior,” says Reitzenstein. But here the physicists achieved success: they were able to prove that disturbing the laser leads to a chaotic pulse sequence in which each light pulse contains only around 100 photons.

Next steps in the research

“We are currently preparing experiments to synchronize two lasers as far as the quantum limit of just one photon moving back and forth,” says Reitzenstein. “If we succeed, we will be a step closer to a fundamental understanding of synchronization and to a secure form of data transmission.”

There is also another hurdle to negotiate: at present, the microlasers only work in extremely cold conditions, at below minus 150 degrees Celsius. Operation at room temperature should be possible, however, if the quantum dots are optimized for this purpose. The physicists are currently pursuing this goal in a separate project.

“Observing chaos for quantum-dot microlasers with external feedback”, Ferdinand Albert, Caspar Hopfmann, Stephan Reitzenstein, Christian Schneider, Sven Höfling, Lukas Worschech, Martin Kamp, Wolfgang Kinzel, Alfred Forchel & Ido Kanter, Nature Communications, doi 10.1038/ncomms1370


Dr. Stephan Reitzenstein, Institute of Physics at the University of Würzburg,
T +49 (0)931 31-85116,

Robert Emmerich | idw
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>