Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chandrayaan-1 starts observations of the Moon

The Indian Space Research Organisation’s lunar orbiter Chandrayaan-1 released a probe that impacted close to the lunar south pole on 14 November. Following this, the instruments on the spacecraft are being switched on to get the science observations started.

The Moon Impact Probe was dropped close to Shackleton crater, a place close to the south pole, where ice may exist in areas that are never illuminated by the Sun. It carried three instruments: a video imaging system, a radar altimeter and a mass spectrometer. The imaging system took pictures of the Moon as it approached the surface, the radar was used to determine the altitude, and the mass spectrometer was used to study the thin lunar atmosphere.

The probe was released from the spacecraft at 15:36 CET (20:06 Indian Standard Time), on 14 November and took 25 minutes to reach the surface. As it descended, the probe transmitted pictures to the orbiter that were later downloaded to Earth.

The Terrain Mapping Camera, TMC, and the Radiation Dose Monitor, RADOM, were functional by that time on the orbiter. After the impact of the probe, the remaining orbiter instruments were switched on consecutively for their commissioning activities.

During commissioning all standard operating modes of an instrument are exercised and the data and housekeeping parameters are examined to verify that everything is working properly.

The European near-infrared spectrometer SIR-2 was commissioned successfully on 19 November. The instrument was switched on and sent back housekeeping data indicating normal functionality. Science observations were started successfully on 20 November.

The Chandrayaan-1 X-ray Spectrometer, C1XS, was first activated on 23 November, and its commissioning is in progress.

The Sub-keV Atom Reflecting Analyser, SARA will be commissioned from 7 to 10 December. The commissioning for this instrument will take longer than usual because the instrument operates at a high-voltage, which will be increased in steps.

Detlef Koschny | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>