Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chandrayaan-1 starts observations of the Moon

25.11.2008
The Indian Space Research Organisation’s lunar orbiter Chandrayaan-1 released a probe that impacted close to the lunar south pole on 14 November. Following this, the instruments on the spacecraft are being switched on to get the science observations started.

The Moon Impact Probe was dropped close to Shackleton crater, a place close to the south pole, where ice may exist in areas that are never illuminated by the Sun. It carried three instruments: a video imaging system, a radar altimeter and a mass spectrometer. The imaging system took pictures of the Moon as it approached the surface, the radar was used to determine the altitude, and the mass spectrometer was used to study the thin lunar atmosphere.

The probe was released from the spacecraft at 15:36 CET (20:06 Indian Standard Time), on 14 November and took 25 minutes to reach the surface. As it descended, the probe transmitted pictures to the orbiter that were later downloaded to Earth.

The Terrain Mapping Camera, TMC, and the Radiation Dose Monitor, RADOM, were functional by that time on the orbiter. After the impact of the probe, the remaining orbiter instruments were switched on consecutively for their commissioning activities.

During commissioning all standard operating modes of an instrument are exercised and the data and housekeeping parameters are examined to verify that everything is working properly.

The European near-infrared spectrometer SIR-2 was commissioned successfully on 19 November. The instrument was switched on and sent back housekeeping data indicating normal functionality. Science observations were started successfully on 20 November.

The Chandrayaan-1 X-ray Spectrometer, C1XS, was first activated on 23 November, and its commissioning is in progress.

The Sub-keV Atom Reflecting Analyser, SARA will be commissioned from 7 to 10 December. The commissioning for this instrument will take longer than usual because the instrument operates at a high-voltage, which will be increased in steps.

Detlef Koschny | alfa
Further information:
http://www.esa.int
http://www.esa.int/esaSC/SEMMVL5DHNF_index_0.html

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>