Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chameleon Magnets: Ability to Switch Magnets "On" or "Off" Could Revolutionize Computing

30.05.2011
In new commentary in Science, UB physicists discuss advancements in controlling the behavior of magnetic materials

What causes a magnet to be a magnet, and how can we control a magnet's behavior? These are the questions that University at Buffalo researcher Igor Zutic, a theoretical physicist, has been exploring over many years.

He is one of many scientists who believe that magnets could revolutionize computing, forming the basis of high-capacity and low-energy memory, data storage and data transfer devices.

Today, in a commentary in Science, Zutic and fellow UB physicist John Cerne, who studies magnetism experimentally, discuss an exciting advancement: A study by Japanese scientists showing that it is possible to turn a material's magnetism on and off at room temperature.

A material's magnetism is determined by a property all electrons possess: something called "spin." Electrons can have an "up" or "down" spin, and a material is magnetic when most of its electrons possess the same spin. Individual spins are akin to tiny bar magnets, which have north and south poles.

In the Japanese study, which also appears in the current issue of Science, a team led by researchers at Tohoku University added cobalt to titanium dioxide, a nonmagnetic semiconductor, to create a new material that, like a chameleon, can transform from a paramagnet (a nonmagnetic material) to a ferromagnet (a magnetic material) at room temperature.

To achieve change, the researchers applied an electric voltage to the material, exposing the material to extra electrons. As Zutic and Cerne explain in their commentary, these additional electrons -- called "carriers" -- are mobile and convey information between fixed cobalt ions that causes the spins of the cobalt electrons to align in one direction.

In an interview, Zutic calls the ability to switch a magnet "on" or "off" revolutionary. He explains the promise of magnet- or spin-based computing technology -- called "spintronics" -- by contrasting it with conventional electronics.

Modern, electronic gadgets record and read data as a blueprint of ones and zeros that are represented, in circuits, by the presence or absence of electrons. Processing information requires moving electrons, which consumes energy and produces heat.

Spintronic gadgets, in contrast, store and process data by exploiting electrons' "up" and "down" spins, which can stand for the ones and zeros devices read. Future energy-saving improvements in data processing could include devices that process information by "flipping" spin instead of shuttling electrons around.

In their Science commentary, Zutic and Cerne write that chameleon magnets could "help us make more versatile transistors and bring us closer to the seamless integration of memory and logic by providing smart hardware that can be dynamically reprogrammed for optimal performance of a specific task."

"Large applied magnetic fields can enforce the spin alignment in semiconductor transistors," they write. "With chameleon magnets, such alignment would be tunable and would require no magnetic field and could revolutionize the role ferromagnets play in technology."

In an interview, Zutic says that applying an electric voltage to a semiconductor injected with cobalt or other magnetic impurities may be just one way of creating a chameleon magnet.

Applying heat or light to such a material could have a similar effect, freeing electrons that can then convey information about spin alignment between ions, he says.

The so-far elusive heat-based chameleon magnets were first proposed by Zutic in 2002. With his colleagues, Andre Petukhov of the South Dakota School of Mines and Technology, and Steven Erwin of the Naval Research Laboratory, he elucidated the behavior of such magnets in a 2007 paper.

The concept of nonmagnetic materials becoming magnetic as they heat up is counterintuitive, Zutic says. Scientists had long assumed that orderly, magnetic materials would lose their neat, spin alignments when heated -- just as orderly, crystalline ice melts into disorderly water as temperatures rise.

The carrier electrons, however, are the key. Because heating a material introduces additional carriers that can cause nearby electrons to adopt aligned spins, heating chameleon materials -- up to a certain temperature -- should actually cause them to become magnetic, Zutic explains. His research on magnetism is funded by the Department of Energy, Office of Naval Research, Air Force Office of Scientific Research and the National Science Foundation.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>