Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN Sets Course for Extra-Low-Energy Antiprotons

29.09.2011
The kick-off meeting for ELENA, the Extra Low Energy Antiproton Ring, starts today at CERN*. Approved by CERN Council in June this year, ELENA is scheduled to deliver its first antiprotons in 2016. This week’s kick-off meeting brings together scientists from Canada, Denmark, France, Germany, Japan, Sweden, the UK and the USA. The project is led by CERN.

“ELENA is a new facility aimed to deliver antiprotons at the lowest energies ever reached in order to improve the study of antimatter,” said CERN’s Stéphan Maury, Head of the ELENA project.

ELENA will consist of a small new decelerator ring that will be installed in same building that houses CERN’s existing Antiproton Decelerator (AD). It will slow antiprotons down to under a fiftieth of the current AD energy, bringing an improvement of a factor of 10-100 in antiproton trapping efficiency. At the AD, antiprotons have to be slowed down by passing them through a series of foils, a process that results in the loss of some 99.9% of the antiprotons extracted from the AD before they reach the experiments.

“This is a big step forward for antimatter physics. Going to extra low energy increases the trapping efficiency for antiprotons, which will not only improve the research potential of existing experiments, but will also allow CERN to support a wider range of antimatter experiments,” said Walter Oelert, an antimatter pioneer at CERN, who has actively supported the ELENA project.

Ever since the Nobel Prize winning discovery of antiprotons in 1955, these particles have proved to be an important research tool. In the 1980s, they played a pivotal role in the discovery of the W and Z particles at CERN, which also led to a Nobel Prize.

CERN’s achievements with low-energy antiprotons include the trapping and accumulation of large numbers of antiprotons in the early 1990s, which led to very precise comparisons of protons and antiprotons. In 1995, the first antiatoms - antihydrogen - were created at CERN, opening the way to new experiments on antimatter and, more recently, the trapping of antihydrogen atoms. One experiment at the AD has also made preliminary studies of the potential for using antiprotons in cancer therapy. In the future, experiments will make detailed comparisons of hydrogen and antihydrogen atoms, and measure the influence of gravity on antiprotons.

Construction of ELENA is scheduled to begin in 2013, in parallel with AD running. When complete in 2016, ELENA will be able to support more experiments than the AD can today, giving CERN - a laboratory best known for the high-energy frontier of particle physics - a grandstand seat at the low-energy frontier.

Contact
CERN Press Office, press.office@cern.ch
+41 22 767 34 32
+41 22 767 21 41
http://www.cern.ch/Press
Follow CERN at:
• www.cern.ch
• http://twitter.com/cern/
• http://www.youtube.com/user/CERNTV
• http://www.quantumdiaries.org/
*CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. One candidate for accession: Romania. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

CERN Press Office | Newswise Science News
Further information:
http://www.cern.ch

Further reports about: Antiproton CERN Course Extra-Low-Energy Nobel Prize Nuclear Research hydrogen atom

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>