Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN Sets Course for Extra-Low-Energy Antiprotons

29.09.2011
The kick-off meeting for ELENA, the Extra Low Energy Antiproton Ring, starts today at CERN*. Approved by CERN Council in June this year, ELENA is scheduled to deliver its first antiprotons in 2016. This week’s kick-off meeting brings together scientists from Canada, Denmark, France, Germany, Japan, Sweden, the UK and the USA. The project is led by CERN.

“ELENA is a new facility aimed to deliver antiprotons at the lowest energies ever reached in order to improve the study of antimatter,” said CERN’s Stéphan Maury, Head of the ELENA project.

ELENA will consist of a small new decelerator ring that will be installed in same building that houses CERN’s existing Antiproton Decelerator (AD). It will slow antiprotons down to under a fiftieth of the current AD energy, bringing an improvement of a factor of 10-100 in antiproton trapping efficiency. At the AD, antiprotons have to be slowed down by passing them through a series of foils, a process that results in the loss of some 99.9% of the antiprotons extracted from the AD before they reach the experiments.

“This is a big step forward for antimatter physics. Going to extra low energy increases the trapping efficiency for antiprotons, which will not only improve the research potential of existing experiments, but will also allow CERN to support a wider range of antimatter experiments,” said Walter Oelert, an antimatter pioneer at CERN, who has actively supported the ELENA project.

Ever since the Nobel Prize winning discovery of antiprotons in 1955, these particles have proved to be an important research tool. In the 1980s, they played a pivotal role in the discovery of the W and Z particles at CERN, which also led to a Nobel Prize.

CERN’s achievements with low-energy antiprotons include the trapping and accumulation of large numbers of antiprotons in the early 1990s, which led to very precise comparisons of protons and antiprotons. In 1995, the first antiatoms - antihydrogen - were created at CERN, opening the way to new experiments on antimatter and, more recently, the trapping of antihydrogen atoms. One experiment at the AD has also made preliminary studies of the potential for using antiprotons in cancer therapy. In the future, experiments will make detailed comparisons of hydrogen and antihydrogen atoms, and measure the influence of gravity on antiprotons.

Construction of ELENA is scheduled to begin in 2013, in parallel with AD running. When complete in 2016, ELENA will be able to support more experiments than the AD can today, giving CERN - a laboratory best known for the high-energy frontier of particle physics - a grandstand seat at the low-energy frontier.

Contact
CERN Press Office, press.office@cern.ch
+41 22 767 34 32
+41 22 767 21 41
http://www.cern.ch/Press
Follow CERN at:
• www.cern.ch
• http://twitter.com/cern/
• http://www.youtube.com/user/CERNTV
• http://www.quantumdiaries.org/
*CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. One candidate for accession: Romania. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

CERN Press Office | Newswise Science News
Further information:
http://www.cern.ch

Further reports about: Antiproton CERN Course Extra-Low-Energy Nobel Prize Nuclear Research hydrogen atom

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>