Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN’s LHCb Experiment Takes Precision Physics to a New Level

30.08.2011
Results to be presented by CERN*’s LHCb experiment at the biennial Lepton-Photon conference in Mumbai, India on Saturday 27 August are becoming the most precise yet on particles called B mesons, which provide a way to investigate matter-antimatter asymmetry.

The LHCb experiment studies this phenomenon by observing the way B mesons decay into other particles. The new results reinforce earlier measurements from LHCb presented at last month’s European Physical Society conference in Grenoble, France, showing that the B meson decays so far measured by the collaboration are in full agreement with predictions from the Standard Model of particle physics, the theory physicists use to describe the behaviour of fundamental particles.

“This result shows that we’re now able to measure the finest details of the B meson system,” said LHCb spokesperson Pierluigi Campana, “which puts us right where we need to be to start finding cracks in the Standard Model, and explaining matter-antimatter asymmetry.”

Matter and antimatter are thought to have existed in equal amounts at the beginning of the universe, but as the universe expanded and cooled, an asymmetry developed between them, leaving a universe that appears to be composed entirely of matter. Heavy quarks provide a good place to investigate this phenomenon because the heavier the quark, the more ways it can decay, and all of these decays are described by the Standard Model. The Standard Model predicts matter-antimatter asymmetry, but at a level which is too small to explain the observed asymmetry in the Universe. Deviations from the predictions would bring an indication of new physics. B-quarks are produced copiously at the LHC, which makes them the particle of choice for studying matter-antimatter asymmetry in the laboratory. Quarks are never produced alone, but always travel in company: they are accompanied by another quark giving rise to the family of particles called B mesons. It is these that LHCb studies.

... more about:
»CERN »Fermilab »LHC »LHCb »Nuclear Research »Precision

Earlier in the year, experiments at Fermilab presented results that hinted at a divergence from the Standard Model. Since then, however, the LHCb experiment has surpassed the Fermilab experiments’ precision, and sees no such divergence.

“These results suggest that the devil is in the detail,” said Campana, “and we’ve reached the point where we’re getting right down into the details. It’s not the devil we expect to find there, though, but new hints of deviations from the Standard Model.”

LHCb has been able to reach this level of precision so early in the operational lifetime of the LHC thanks to the excellent performance of the LHC, and the way that LHCb scientists have worked with LHC engineers to optimize the amount of data collected by the experiment. Unlike the large general-purpose detectors, ATLAS and CMS, the LHCb detector has not been constructed to record data at the maximum rate the LHC can deliver. LHCb contains very sensitive elements close to the beam that can measure the very short tracks left by B mesons before they decay. Reconciling the need to protect these devices from possible beam damage with maximizing beam intensity is the challenge these engineers and scientists have overcome.

“Collaboration with the accelerator people has been fantastic,” said Campana, “It’s allowing us to collect data much faster than expected, and bringing us closer to being able to understand where the antimatter went.”

For more information:
http://www.quantumdiaries.org/2011/08/25/trying-to-crack-the-standard-model/
Contact details:
James Gillies, CERN spokesperson, +41 76 487 45 55
Follow CERN at:
• www.cern.ch
• http://twitter.com/cern/
• http://www.youtube.com/user/CERNTV
• http://www.quantumdiaries.org/
*CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. One candidate for accession: Romania.

India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

James Gillies | Newswise Science News
Further information:
http://www.cern.ch

Further reports about: CERN Fermilab LHC LHCb Nuclear Research Precision

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>