Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CERN’s LHCb Experiment Takes Precision Physics to a New Level

Results to be presented by CERN*’s LHCb experiment at the biennial Lepton-Photon conference in Mumbai, India on Saturday 27 August are becoming the most precise yet on particles called B mesons, which provide a way to investigate matter-antimatter asymmetry.

The LHCb experiment studies this phenomenon by observing the way B mesons decay into other particles. The new results reinforce earlier measurements from LHCb presented at last month’s European Physical Society conference in Grenoble, France, showing that the B meson decays so far measured by the collaboration are in full agreement with predictions from the Standard Model of particle physics, the theory physicists use to describe the behaviour of fundamental particles.

“This result shows that we’re now able to measure the finest details of the B meson system,” said LHCb spokesperson Pierluigi Campana, “which puts us right where we need to be to start finding cracks in the Standard Model, and explaining matter-antimatter asymmetry.”

Matter and antimatter are thought to have existed in equal amounts at the beginning of the universe, but as the universe expanded and cooled, an asymmetry developed between them, leaving a universe that appears to be composed entirely of matter. Heavy quarks provide a good place to investigate this phenomenon because the heavier the quark, the more ways it can decay, and all of these decays are described by the Standard Model. The Standard Model predicts matter-antimatter asymmetry, but at a level which is too small to explain the observed asymmetry in the Universe. Deviations from the predictions would bring an indication of new physics. B-quarks are produced copiously at the LHC, which makes them the particle of choice for studying matter-antimatter asymmetry in the laboratory. Quarks are never produced alone, but always travel in company: they are accompanied by another quark giving rise to the family of particles called B mesons. It is these that LHCb studies.

... more about:
»CERN »Fermilab »LHC »LHCb »Nuclear Research »Precision

Earlier in the year, experiments at Fermilab presented results that hinted at a divergence from the Standard Model. Since then, however, the LHCb experiment has surpassed the Fermilab experiments’ precision, and sees no such divergence.

“These results suggest that the devil is in the detail,” said Campana, “and we’ve reached the point where we’re getting right down into the details. It’s not the devil we expect to find there, though, but new hints of deviations from the Standard Model.”

LHCb has been able to reach this level of precision so early in the operational lifetime of the LHC thanks to the excellent performance of the LHC, and the way that LHCb scientists have worked with LHC engineers to optimize the amount of data collected by the experiment. Unlike the large general-purpose detectors, ATLAS and CMS, the LHCb detector has not been constructed to record data at the maximum rate the LHC can deliver. LHCb contains very sensitive elements close to the beam that can measure the very short tracks left by B mesons before they decay. Reconciling the need to protect these devices from possible beam damage with maximizing beam intensity is the challenge these engineers and scientists have overcome.

“Collaboration with the accelerator people has been fantastic,” said Campana, “It’s allowing us to collect data much faster than expected, and bringing us closer to being able to understand where the antimatter went.”

For more information:
Contact details:
James Gillies, CERN spokesperson, +41 76 487 45 55
Follow CERN at:
*CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. One candidate for accession: Romania.

India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

James Gillies | Newswise Science News
Further information:

Further reports about: CERN Fermilab LHC LHCb Nuclear Research Precision

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>



Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

More VideoLinks >>>