Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN’s CLOUD Experiment Provides Unprecedented Insight Into Cloud Formation

26.08.2011
In a paper published in the journal Nature today, the CLOUD* experiment at CERN** has reported its first results. The CLOUD experiment has been designed to study the effect of cosmic rays on the formation of atmospheric aerosols - tiny liquid or solid particles suspended in the atmosphere - under controlled laboratory conditions. Atmospheric aerosols are thought to be responsible for a large fraction of the seeds that form cloud droplets. Understanding the process of aerosol formation is therefore important for understanding the climate.

The CLOUD results show that trace vapours assumed until now to account for aerosol formation in the lower atmosphere can explain only a tiny fraction of the observed atmospheric aerosol production. The results also show that ionisation from cosmic rays significantly enhances aerosol formation. Precise measurements such as these are important in achieving a quantitative understanding of cloud formation, and will contribute to a better assessment of the effects of clouds in climate models.

“These new results from CLOUD are important because we’ve made a number of first observations of some very important atmospheric processes,” said the experiment’s spokesperson, Jasper Kirkby. “We’ve found that cosmic rays significantly enhance the formation of aerosol particles in the mid troposphere and above. These aerosols can eventually grow into the seeds for clouds. However, we’ve found that the vapours previously thought to account for all aerosol formation in the lower atmosphere can only account for a small fraction of the observations - even with the enhancement of cosmic rays."

Atmospheric aerosols play an important role in the climate. Aerosols reflect sunlight and produce cloud droplets. Additional aerosols would therefore brighten clouds and extend their lifetime. By current estimates, about half of all cloud droplets begin with the clustering of molecules that are present in the atmosphere only in minute amounts. Some of these embryonic clusters eventually grow large enough to become the seeds for cloud droplets. Trace sulphuric acid and ammonia vapours are thought to be important, and are used in all atmospheric models, but the mechanism and rate by which they form clusters together with water molecules have remained poorly understood until now.

The CLOUD results show that a few kilometres up in the atmosphere sulphuric acid and water vapour can rapidly form clusters, and that cosmic rays enhance the formation rate by up to ten-fold or more. However, in the lowest layer of the atmosphere, within about a kilometre of Earth's surface, the CLOUD results show that additional vapours such as ammonia are required. Crucially, however, the CLOUD results show that sulphuric acid, water and ammonia alone – even with the enhancement of cosmic rays - are not sufficient to explain atmospheric observations of aerosol formation. Additional vapours must therefore be involved, and finding out their identity will be the next step for CLOUD.

“It was a big surprise to find that aerosol formation in the lower atmosphere isn’t due to sulphuric acid, water and ammonia alone,” said Kirkby. “Now it’s vitally important to discover which additional vapours are involved, whether they are largely natural or of human origin, and how they influence clouds. This will be our next job.”

The CLOUD experiment consists of a state-of-the-art chamber in which atmospheric conditions can be simulated with high control and precision, including the concentrations of trace vapours that drive aerosol formation. A beam of particles from CERN’s Proton Synchrotron accelerator provides an artificial and adjustable source of cosmic radiation.

Further information:

Contact
CERN Press Office, press.office@cern.ch
+41 22 767 34 32
+41 22 767 21 41
http://www.cern.ch/Press
Link to CLOUD backgrounder:
http://press.web.cern.ch/press/PressReleases/Releases2011/downloads/CLOUD_SI_press-briefing_29JUL11.pdf
Link to videos:
Video News Release: http://cdsweb.cern.ch/record/1364842
CERN News: http://cdsweb.cern.ch/record/1370582
Link to graphic:
http://cdsweb.cern.ch/record/1375156
Link to CLOUD photos:
http://cdsweb.cern.ch/record/1374405
http://cdsweb.cern.ch/record/1221293
Follow CERN at:
www.cern.ch
http://twitter.com/cern/
http://www.youtube.com/user/CERNTV
http://www.quantumdiaries.org/
*The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment is conducted by an international and interdisciplinary collaboration of scientists from Austria (University of Innsbruck, University of Vienna), Finland (Finnish Meteorological Institute, Helsinki Institute of Physics, University of Eastern Finland, University of Helsinki), Germany (Johann Wolfgang Goethe University Frankfurt, Leibniz Institute for Tropospheric Research), Portugal (University of Beira Interior, University of Lisbon), Russia (Lebedev Physical Institute), Switzerland (CERN, Paul Scherrer Institut), the United Kingdom (University of Leeds) and the United States of America (California Institute of Technology).

**CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. One candidate for accession: Romania.

India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

-----------------------------------------------

Version française:
PR15.11
25.08.2011
La collaboration CLOUD du CERN jette un nouvel éclairage sur la formation des nuages

Genève, le 25 août 2011. Dans un article publié aujourd’hui dans la revue Nature, la collaboration CLOUD* du CERN** communique ses premiers résultats. L’expérience CLOUD a été conçue pour étudier en laboratoire l’effet des rayons cosmiques sur la formation des aérosols atmosphériques, qui sont de minuscules particules liquides ou solides en suspension dans l’atmosphère. On estime qu’une large part des noyaux de condensation autour desquels se forment les gouttelettes des nuages sont des aérosols atmosphériques. Comprendre le processus de la formation des aérosols est donc important pour comprendre le climat.

Les résultats de l’expérience CLOUD montrent que les vapeurs présentes à l’état de traces auxquelles ont attribuait jusqu’ici la formation des aérosols dans la basse atmosphère ne peuvent expliquer qu’un très faible pourcentage de la production des aérosols atmosphériques observés. Ces résultats révèlent aussi que l’ionisation par les rayons cosmiques favorise considérablement la formation d’aérosols. Ce type de mesures de précision est important pour avoir une compréhension quantitative de la formation des nuages et contribuera à mieux définir les effets des nuages dans les modèles climatiques.

« Ces nouveaux résultats de CLOUD sont importants : nous avons observé pour la première fois certains processus atmosphériques déterminants » explique Jasper Kirkby, le porte-parole de l’expérience. Nous avons trouvé que les rayons cosmiques favorisent nettement la formation de particules d’aérosol au milieu de la troposphère et au-dessus. Par la suite, ces aérosols peuvent devenir les noyaux de condensation des nuages. Cependant, nous avons pu établir que les vapeurs qui étaient considérées comme responsables de la formation de tous les aérosols dans la basse atmosphère ne peuvent expliquer qu’une petite partie des observations, même avec la contribution des rayons cosmiques. »

Les aérosols atmosphériques jouent un rôle important dans le climat. Ils reflètent la lumière solaire et produisent des gouttelettes qui forment les nuages. Des aérosols supplémentaires rendraient donc les nuages plus lumineux et prolongeraient leur durée de vie. Selon les estimations actuelles, environ la moitié de toutes les gouttelettes des nuages prennent naissance par agglutinement de molécules qui sont présentes dans l’atmosphère en quantité infime. Certains de ces amas embryonnaires finissent par devenir suffisamment gros pour devenir des noyaux de condensation autour desquels se forment les gouttelettes des nuages. On suppose que l’acide sulfurique et les vapeurs d’ammoniac à l’état de traces jouent un rôle important. Ils sont utilisés dans tous les modèles atmosphériques, mais le mécanisme proprement dit et leur taux d’agglutinement avec des molécules d’eau restent peu clairs à ce jour.

Les résultats de CLOUD indiquent que, à quelques kilomètres d’altitude, dans l’atmosphère, de l’acide sulfurique et de la vapeur d’eau peuvent rapidement former des amas et que les rayons cosmiques augmentent leur taux de formation d’un facteur dix ou plus. Cependant, dans les couches les plus basses de l’atmosphère, jusqu’à une altitude d’environ mille mètres, les résultats de CLOUD montrent que des vapeurs supplémentaires, notamment de l’ammoniac, sont nécessaires. Surtout, les résultats de CLOUD ont montré que de l’acide sulfurique, de l’eau et de l’ammoniac – même avec l’effet favorable des rayons cosmiques – ne peuvent pas à eux seuls expliquer les observations atmosphériques de la formation des aérosols. Des vapeurs supplémentaires doivent donc entrer en jeu. Leur identification sera la prochaine étape pour CLOUD.

« Nous avons été vraiment surpris de constater que la formation des aérosols dans la basse atmosphère n’est pas due qu’à l’acide sulfurique, à l’eau et à l’ammoniac, explique Jasper Kirkby. Maintenant, il est crucial de découvrir quelles vapeurs supplémentaires entrent en jeu (qu'elles soient essentiellement naturelles ou d'origine humaine) et d'établir comment elles influent sur les nuages. Ça, ce sera notre prochain travail. »

L’expérience CLOUD prend la forme d’une chambre de dernière génération dans laquelle les conditions atmosphériques peuvent être simulées avec une haute précision et où il est possible de régler les concentrations de vapeurs à l'état de traces qui entraînent la formation des aérosols. Un faisceau de particules accélérées dans le Synchrotron à protons du CERN fournit une source artificielle ajustable de rayonnement cosmique.

Pour plus d’informations :

Contact
Bureau de presse du CERN, press.office@cern.ch
+41 22 767 34 32
+41 22 767 21 41
http://www.cern.ch/Press
Pour des informations complémentaires sur CLOUD :
http://press.web.cern.ch/press/PressReleases/Releases2011/downloads/CLOUD_SI_press-briefing_29JUL11-FR.pdf
Lien vers les vidéos :
Communiqué de presse sous forme vidéo : http://cdsweb.cern.ch/record/1364842
Nouvelles du CERN : http://cdsweb.cern.ch/record/1370582?
Lien vers le graphique :
http://cdsweb.cern.ch/record/1375156
Lien vers les photos de CLOUD :
http://cdsweb.cern.ch/record/1374405
http://cdsweb.cern.ch/record/1221293
Pour suivre les activités du CERN :
• www.cern.ch
• http://twitter.com/cern/
• http://www.youtube.com/user/CERNTV
• http://www.quantumdiaries.org/
*L’expérience CLOUD (Cosmics Leaving OUtdoor Droplets – rayons cosmiques créant des gouttelettes) est menée par une collaboration internationale interdisciplinaire de scientifiques d’Autriche (Université d’Innsbruck et Université de Vienne), de Finlande (Institut finlandais de météorologie, Institut de physique d’Helsinki, Université de Finlande orientale et Université d’Helsinki), d’Allemagne (Université Johann Wolfgang Goethe de Francfort et Institut Leibniz pour la recherche troposphérique), du Portugal (Université de Beira intérieur et Université de Lisbonne), de Russie (Institut de physique Lebedev), de Suisse (CERN et Institut Paul Scherrer), du Royaume-Uni (Université de Leeds) et des États-Unis d'Amérique (Institut de technologie de Californie ).
**Le CERN, Organisation européenne pour la Recherche nucléaire, est le plus éminent laboratoire de recherche du monde en physique des particules. Il a son siège à Genève. Ses États membres actuels sont les suivants : Allemagne, Autriche, Belgique, Bulgarie, Danemark, Espagne, Finlande, France, Grèce, Hongrie, Italie, Norvège, Pays-Bas, Pologne, Portugal, République slovaque, République tchèque, Royaume-Uni, Suède, Suisse. La Roumanie est candidate à l’adhésion.

Les États-Unis d’Amérique, la Fédération de Russie, l’Inde, Israël, le Japon, la Turquie, la Commission européenne et l’UNESCO ont le statut d’observateur.

CERN Press Office | Newswise Science News
Further information:
http://www.cern.ch/Press

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>