Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN collider to become the world's fastest stopwatch?

12.11.2012
Light pulses a million times shorter than previously possible: Scientists at the Vienna University of Technology are proposing a new measuring method, using equipment which will soon be available at CERN

Heavy ion collisions at CERN should be able to produce the shortest light pulses ever created. This was demonstrated by computer simulations at the Vienna University of Technology.


Two lead atoms collide, creating a quark gluon plasma, which can emit ultra short laser pulses.

Credit: Vienna University of Technology

The pulses are so short that they cannot even be measured by today's technological equipment. Now, a method has been proposed to create the world's most precise stopwatch for the world's shortest light pulses, using a detector which is going to be installed at CERN in 2018.

Small, Short and Hot

Phenomena taking place on very short time scales are often investigated using ultra short laser pulses. Today, pulse durations of the order of attoseconds (billionths of a billionths of a second, 10^-18 seconds) can be created. But these records could soon be broken: "Atomic nuclei in particle colliders like the LHC at CERN or at RHIC can create light pulses which are still a million times shorter than that", says Andreas Ipp from TU Vienna.

In the ALICE experiment at CERN, lead nuclei are collided almost at the speed of light. The debris of the scattered nuclei together with new particles created by the power of the impact form a quark-gluon plasma, a state of matter which is so hot that even protons and neutrons melt. Their building blocks – quarks and gluons – can move independently without being bound to each other. This quark-gluon plasma only exists for several yoctoseconds (10^-24 seconds).

Ideas From Astronomy

From the quark-gluon plasma created in a particle collider, light pulses can be emitted, which carry valuable information about the plasma. However, conventional measurement techniques are much too slow to resolve flashes on a yoctosecond timescale. "That's why we make use of the Hanbury Brown-Twiss effect, an idea which was originally developed for astronomical measurements", says Andreas Ipp.

In a Hanbury Brown-Twiss experiment, correlations between two different light detectors are studied. That way, the diameter of a star can be calculated very precisely. "Instead of studying spatial distances, the effect can just as well be used for measuring time intervals", says Andreas Ipp. The calculations he did together with Peter Somkuti show that the yoctosecond pulses of the quark-gluon plasma could be resolved by a Hanbury Brown-Twiss experiment. "It would be hard to do, but it would definitely be achievable", says Ipp. This experiment would not require any additional expensive detectors, it could be done with the "forward calorimeter", which is supposed to go on line at CERN in 2018. That way, the ALICE-experiment could become the world's most accurate stopwatch.

The Enigmas of the Plasma

There are still many open questions in quark-gluon plasma physics. It has an extraordinarily low viscosity, it is thinner than any liquid we know. Even if it starts out in a state of extreme disequilibrium, it reaches a thermal equilibrium extremely fast. Studying the light pulses from the quark-gluon plasma could yield valuable new information to better understand this state of matter.

In the future, the light pulses could perhaps even be used for nuclear research. "Experiments using two light pulses are often used in quantum physics", says Andreas Ipp. "The first pulse changes the state of the object under investigation, a second pulse is used shortly after that, to measure the change." With yoctosecond light pulses, this well-established approach could be used in areas which up until now have been completely inaccessible to this kind of research.

Further information:
Dr. Andreas Ipp
Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstr. 8-10, 1040 Vienna
T: +43 1 58801 13635
ipp@hep.itp.tuwien.ac.at

Florian Aigner | EurekAlert!
Further information:
http://www.tuwien.ac.at

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>