Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceres: The tiny world where volcanoes erupt ice

02.09.2016

Ahuna Mons is a volcano that rises 13,000 feet high and spreads 11 miles wide at its base. This would be impressive for a volcano on Earth. But Ahuna Mons stands on Ceres, a dwarf planet less than 600 miles wide that orbits the Sun between Mars and Jupiter. Even stranger, Ahuna Mons isn't built from lava the way terrestrial volcanoes are -- it's built from ice.

"Ahuna is the one true 'mountain' on Ceres," said David Williams, associate research professor in Arizona State University's School of Earth and Space Exploration. "After studying it closely, we interpret it as a dome raised by cryovolcanism."


Volcanic dome Ahuna Mons rises above a foreground impact crater, as seen by NASA's Dawn spacecraft with no vertical exaggeration. Eruptions of salty, muddy water built the mountain by repeated eruptions, flows, and freezing. Streaks from falls of rocks and debris run down its flanks, while overhead views show fracturing across its summit.

Credit: Dawn Science Team and NASA/JPL-Caltech/GSFC

This is a form of low-temperature volcanic activity, where molten ice -- water, usually mixed with salts or ammonia -- replaces the molten silicate rock erupted by terrestrial volcanoes. Giant mountain Ahuna is a volcanic dome built from repeated eruptions of freezing salty water.

Williams is part of a team of scientists working with NASA's Dawn mission who have published papers in the journal Science this week. His specialty is volcanism, and that drew him to the puzzle of Ahuna Mons.

"Ahuna is truly unique, being the only mountain of its kind on Ceres," he said. "It shows nothing to indicate a tectonic formation, so that led us to consider cryovolcanism as a method for its origin."

Dawn scientist Ottaviano Ruesch, of NASA's Goddard Space Flight Center, Greenbelt, Maryland, is the lead author on the Science paper about Ceres volcanism. He says, "This is the only known example of a cryovolcano that potentially formed from a salty mud mix, and which formed in the geologically recent past."

Williams explained that "Ahuna has only a few craters on its surface, which points to an age of just couple hundred million years at most."

According to the Dawn team, the implications of Ahuna Mons being volcanic in origin are enormous. It confirms that although Ceres' surface temperature averages almost -40° (Celsius or Fahrenheit; the scales converge at this temperature), its interior has kept warm enough for liquid water or brines to exist for a relatively long period. And this has allowed volcanic activity at the surface in recent geological time.

Ahuna Mons is not the only place where icy volcanism happens on Ceres. Dawn's instruments have spotted features that point to cryovolcanic activity that resurfaces areas rather than building tall structures. Numerous craters, for example, show floors that appear flatter than impacts by meteorites would leave them, so perhaps they have been flooded from below. In addition, such flat-floored craters often show cracks suggesting that icy "magma" has pushed them upward, then subsided.

A few places on Ceres exhibit a geo-museum of features. "Occator Crater has several bright spots on its floor," said Williams. "The central spot contains what looks like a cryovolcanic dome, rich in sodium carbonates." Other bright spots, he says, occur over fractures that suggest venting of water vapor mixed with bright salts.

"As the vapor has boiled away," he explained, "it leaves the bright 1salts and carbonate minerals behind. "

Looking inside

Although volcanic-related features appear across the surface of Ceres, for scientists perhaps the most interesting aspect is what these features say about the interior of the dwarf world. Dawn observations suggest that Ceres has an outer shell that's not purely ice or rock, but rather a mixture of both.

Recently, Williams was involved in research that discovered that large impact craters are missing, presumably erased by internal heat, but smaller craters are preserved. "This shows that Ceres' crust has a variable composition -- it's weak at large scales but strong at smaller scales," he said. "It has also evolved geologically."

In the big picture, said Williams, "Ceres appears differentiated internally, with a core and a complex crust made of 30 to 40 percent water ice mixed with silicate rock and salts." And perhaps pockets of brine still exist in its interior.

"We need to continue studying the data to better understand the interior structure of Ceres," said Williams.

Ceres is the second port of call for the Dawn mission, which was launched in 2007 and visited another asteroid, Vesta, from 2011 to 2012. The spacecraft arrived at Ceres in March 2015. It carries a suite of cameras, spectrometers, and gamma-ray and neutron detectors. These were built to image, map, and measure the shape and surface materials of Ceres, and they collect information to help scientists understand the history of these small worlds and what they can tell us of the solar system's birth.

NASA plans for Dawn to continue orbiting Ceres and collecting data for another year or so. The dwarf planet is slowly moving toward its closest approach to the Sun, called perihelion, which will come in April 2018. Scientists expect that the growing solar warmth will produce some detectable changes in Ceres' surface or maybe even trigger volcanic activity.

"We hope that by observing Ceres as it approaches perihelion, we might see some active venting. This would be an ideal way to end the mission," said Williams.

Robert Burnham | EurekAlert!

Further reports about: craters dwarf volcanic activity volcanism volcanoes

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>