Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016

Researchers at Tohoku University are developing a method to improve the aggressive intensity of cavitation without the need to increase the input power.

Cavitation - the formation, growth and subsequent collapse of microbubbles - produces high, localized energy which can be used in chemical processes for treating water and the pretreatment of biomass.


This image shows hydrodynamic cavitation through a venturi tube.

Credit: Hitoshi Soyama

The research team found that the conventional cavitation method of applying ultrasonic energy was not strong enough, so they proposed using hydrodynamic cavitation instead.

In the proposed method, test water is passed through a constriction tube. Hydrodynamic cavitation is then produced by the decrease of pressure due to the increase of flow velocity.

The team found that the aggressive intensity of hydrodynamic cavitation was optimized with an increase of pressure at the bubble collapse region.

Although most researchers believe that an enlarged cavitation area produces aggressive intensity, by contrast, it seems a rise in aggressive intensity can occur with a reduced cavitation area. In the research experiments, the size of the cavitating region was reduced by varying the upstream and downstream pressures.

The team has demonstrated the enhancement of cavitation aggressive intensity by a factor of about 100 by optimizing pressure at the region, measuring acoustic power at cavitation bubble collapse, and luminescence as a function of the pressure.

This method can be useful for practical applications, as it does not need additional power, but the aggressive intensity can be increased simply by controlling a valve downstream to the cavitating region.

Media Contact

PR Division, School of Engineering
eng-pr@eng.tohoku.ac.jp

 @TohokuUniPR

http://www.tohoku.ac.jp/en/ 

PR Division, School of Engineering | EurekAlert!

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>