Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini spacecraft observes seasonal rains on Titan

18.03.2011
This is the first time scientists have obtained current evidence of rain soaking Titan's surface at low latitudes.

As spring continues to unfold on Saturn, April showers on the planet's largest moon, Titan, have brought methane rain to its equatorial deserts, as revealed in images captured by NASA's Cassini spacecraft.

This is the first time scientists have obtained current evidence of rain soaking Titan's surface at low latitudes. The observations are released today in the journal Science.

"Titan continues to surprise and amaze us," said Alfred McEwen, a planetary scientist at the UA's Lunar and Planetary Lab and a co-author on the paper. "After years of dry weather in the tropics, an area the size of Arizona and New Mexico combined was darkened by methane rain over a period of just a few weeks."

Extensive rain from large cloud systems, spotted by Cassini's cameras in late 2010, has apparently darkened the surface of the moon. The best explanation is these areas remained wet after methane rainstorms.

The new findings, combined with earlier results reported in Geophysical Research Letters last month, show the weather systems of Titan's thick atmosphere and the changes wrought on the moon's surface are affected by the changing seasons.

"It's amazing to be watching such familiar activity as rainstorms and seasonal changes in weather patterns on a distant, icy satellite," said Elizabeth Turtle, a Cassini imaging team associate at the Johns Hopkins University Applied Physics Lab in Laurel, Md., and lead author of today's publication. "These observations are helping us to understand how Titan works as a system, as well as similar processes on our own planet."

The Saturn system experienced equinox, when the sun lies directly over a planet's equator and seasons change, in August 2009. Years of Cassini observations suggest Titan's global atmospheric circulation pattern responds to the changes in solar illumination, influenced by the atmosphere and the surface, as detailed in the Geophysical Research Letters paper.

Cassini found the surface temperature responds more rapidly to sunlight changes than does the thick atmosphere. The changing circulation pattern produced clouds in Titan's equatorial region.

Clouds on Titan are formed of methane as part of an Earth-like cycle that uses methane instead of water. On Titan, methane fills lakes on the surface, saturates clouds in the atmosphere, and falls as rain.

Though there is evidence that liquids have flowed on the surface at Titan's equator in the past, liquid hydrocarbons, such as methane and ethane, had only been observed on the surface in lakes at polar latitudes. The vast expanses of dunes that dominate Titan's equatorial regions require a predominantly arid climate.

Scientists suspected that clouds might appear at Titan's equatorial latitudes as spring in the northern hemisphere progressed. But they were not sure if dry channels previously observed were cut by seasonal rains or remained from an earlier, wetter climate.

An arrow-shaped storm appeared in the equatorial regions on Sept. 27, 2010 – the equivalent of early April in Titan's year – and a broad band of clouds appeared the next month.

As described in the Science paper, over the next few months, Cassini's imaging science subsystem captured short-lived surface changes visible in images of Titan's surface. A 193,000-square-mile (500,000-square-kilometer) region along the southern boundary of Titan's Belet dune field, as well as smaller areas nearby, had become darker.

Scientists compared the imaging data to data obtained by other instruments and ruled out other possible causes for surface changes. They concluded this change in brightness is most likely the result of surface wetting by methane rain.

These observations suggest that recent weather on Titan is similar to that over Earth's tropics. In tropical regions, Earth receives its most direct sunlight, creating a band of rising motion and rain clouds that encircle the planet.

"These outbreaks may be the Titan equivalent of what creates Earth's tropical rainforest climates, even though the delayed reaction to the change of seasons and the apparently sudden shift is more reminiscent of Earth's behavior over the tropical oceans than over tropical land areas," said Tony Del Genio of NASA's Goddard Institute for Space Studies, New York, a co-author and a member of the Cassini imaging team.

On Earth, the tropical bands of rain clouds shift slightly with the seasons but are present within the tropics year-round. On Titan, such extensive bands of clouds may only be prevalent in the tropics near the equinoxes and move to much higher latitudes as the planet approaches the solstices.

The imaging team intends to watch whether Titan evolves in this fashion as the seasons progress from spring toward northern summer.

"It is patently clear that there is so much more to learn from Cassini about seasonal forcing of a complex surface-atmosphere system like Titan's and, in turn, how it is similar to, or differs from, the Earth's," said Carolyn Porco, Cassini imaging team lead at the Space Science Institute, Boulder, Colo. "We are eager to see what the rest of Cassini's Solstice Mission will bring."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington.

The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute in Boulder, Colo.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>