Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cassini data from Titan indicate a rigid, weathered ice shell

29.08.2013
An analysis of gravity and topography data from Saturn's largest moon, Titan, has revealed unexpected features of the moon's outer ice shell.

The best explanation for the findings, the authors said, is that Titan's ice shell is rigid and that relatively small topographic features on the surface are associated with large roots extending into the underlying ocean. The study is published in the August 29 issue of the journal Nature.

Led by planetary scientists Douglas Hemingway and Francis Nimmo at the University of California, Santa Cruz, the study used new data from NASA's Cassini spacecraft. The researchers were surprised to find a negative correlation between the gravity and topography signals on Titan.

"Normally, if you fly over a mountain, you expect to see an increase in gravity due to the extra mass of the mountain. On Titan, when you fly over a mountain the gravity gets lower. That's a very odd observation," said Nimmo, a professor of Earth and planetary sciences at UC Santa Cruz.

To explain that observation, the researchers developed a model in which each bump in the topography on the surface of Titan is offset by a deeper "root" big enough to overwhelm the gravitational effect of the bump on the surface. The root is like an iceberg extending below the ice shell into the ocean underneath it. "Because ice is lower density than water, you get less gravity when you have a big chunk of ice there than when you have water," Nimmo explained.

An iceberg floating in water is in equilibrium, its buoyancy balancing out its weight. In this model of Titan, however, the roots extending below the ice sheet are so much bigger than the bumps on the surface that their buoyancy is pushing them up against the ice sheet. "It's like a big beach ball under the ice sheet pushing up on it, and the only way to keep it submerged is if the ice sheet is strong," said Hemingway, a doctoral candidate in planetary geophysics at UCSC and lead author of the paper. "If large roots are the reason for the negative correlation, it means that Titan's ice shell must have a very thick rigid layer."

The researchers calculated that, in this model, Titan's ice shell would have to have a rigid layer at least 40 kilometers thick. They also found that hundreds of meters of surface erosion and deposition are needed to account for the observed imbalance between the large roots and small surface topography. The results from their model are similar to estimates obtained by geomorphologists studying the erosion of impact craters and other features on Titan.

These findings have several implications. For example, a thick rigid ice shell makes it very difficult to produce ice volcanoes, which some have proposed to explain certain features seen on the surface.

Unlike Earth's geologically active crust, Titan's ice shell isn't getting recycled by convection or plate tectonics. "It's just sitting there, and weather and erosion are acting on it, moving stuff around and redepositing sediments," Nimmo said. "It may be like the surface of Earth would be if you turned plate tectonics off."

The researchers are not sure what could have given rise to Titan's topographical features with their deep roots. Titan's eccentric orbit around Saturn generates tides that flex the moon's surface and create tidal heating, which could cause variations to develop in the thickness of the ice shell, Hemingway said.

In addition to Hemingway and Nimmo, the coauthors of the paper include Howard Zebker at Stanford University and Luciano Iess at the Sapienza University of Rome. This research was supported in part by NASA. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. More information on the Cassini mission is available online from NASA and the Jet Propulsion Laboratory.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>