Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CASL milestone validates reactor model using TVA data

11.07.2013
Today, the Consortium for Advanced Simulation of Light Water Reactors (CASL) announced that its scientists have successfully completed the first full-scale simulation of an operating nuclear reactor.

CASL is modeling nuclear reactors on supercomputers to help researchers better understand reactor performance with much higher reliability than previously available methods, with the goal of ultimately increasing power output, extending reactor life, and reducing waste.


This CASL visualization shows the thermal distribution of neutrons in Watts Bar Unit 1 Cycle 1 reactor core at initial criticality, as calculated by the VERA program. Image courtesy of Oak Ridge National Laboratory

Simulation results from the Virtual Environment for Reactor Applications (VERA) program, developed by CASL, were compared with actual data provided by the Tennessee Valley Authority's (TVA) Watts Bar Nuclear Plant in Tennessee, which confirmed its accuracy.

"VERA's capabilities range from simulating single fuel pins to modeling an entire operational reactor core," said Jess Gehin of Oak Ridge National Laboratory's Reactor and Nuclear Systems Division. "It addresses operational challenges and supports increased power generation by exploring greater efficiency and life extensions."

During cycle startup of commercial nuclear power reactors, technicians perform a series of tests to confirm the reactor is operating as expected. For CASL, results of previous tests are useful for demonstrating the accuracy of the VERA software. As a CASL partner, TVA provided detailed historical information and measured operational data from the Watts Bar plant to allow comparisons of the VERA simulation.

The simulations of the reactor startup tests are just a first step in the demonstration of VERA. CASL is extending the program's capability to simulate full power operation of the TVA reactor, which will require further VERA development to integrate the nuclear and thermal hydraulic physics. These additional capabilities will allow researchers to pursue breakthroughs in understanding key phenomena in the operating reactors.

CASL, headquartered at ORNL, is one of the Department of Energy's Energy Innovation Hubs. First established in 2010, CASL brings together industry, academia, and national labs to provide advanced modeling and simulation solutions for commercial reactors. Its mission is to confidently predict the performance of nuclear reactors through comprehensive science-based modeling and simulation technology that is deployed and applied broadly throughout the nuclear energy industry to enhance safety, reliability and economics.

The Hub's 10 core partners include: the Electric Power Research Institute, Idaho National Laboratory, Los Alamos National Laboratory, Massachusetts Institute of Technology, North Carolina State University, Sandia National Laboratories, Tennessee Valley Authority, University of Michigan, Westinghouse Electric Company and Oak Ridge National Laboratory. More information about CASL is available at http://www.casl.gov.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>