Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CASL milestone validates reactor model using TVA data

11.07.2013
Today, the Consortium for Advanced Simulation of Light Water Reactors (CASL) announced that its scientists have successfully completed the first full-scale simulation of an operating nuclear reactor.

CASL is modeling nuclear reactors on supercomputers to help researchers better understand reactor performance with much higher reliability than previously available methods, with the goal of ultimately increasing power output, extending reactor life, and reducing waste.


This CASL visualization shows the thermal distribution of neutrons in Watts Bar Unit 1 Cycle 1 reactor core at initial criticality, as calculated by the VERA program. Image courtesy of Oak Ridge National Laboratory

Simulation results from the Virtual Environment for Reactor Applications (VERA) program, developed by CASL, were compared with actual data provided by the Tennessee Valley Authority's (TVA) Watts Bar Nuclear Plant in Tennessee, which confirmed its accuracy.

"VERA's capabilities range from simulating single fuel pins to modeling an entire operational reactor core," said Jess Gehin of Oak Ridge National Laboratory's Reactor and Nuclear Systems Division. "It addresses operational challenges and supports increased power generation by exploring greater efficiency and life extensions."

During cycle startup of commercial nuclear power reactors, technicians perform a series of tests to confirm the reactor is operating as expected. For CASL, results of previous tests are useful for demonstrating the accuracy of the VERA software. As a CASL partner, TVA provided detailed historical information and measured operational data from the Watts Bar plant to allow comparisons of the VERA simulation.

The simulations of the reactor startup tests are just a first step in the demonstration of VERA. CASL is extending the program's capability to simulate full power operation of the TVA reactor, which will require further VERA development to integrate the nuclear and thermal hydraulic physics. These additional capabilities will allow researchers to pursue breakthroughs in understanding key phenomena in the operating reactors.

CASL, headquartered at ORNL, is one of the Department of Energy's Energy Innovation Hubs. First established in 2010, CASL brings together industry, academia, and national labs to provide advanced modeling and simulation solutions for commercial reactors. Its mission is to confidently predict the performance of nuclear reactors through comprehensive science-based modeling and simulation technology that is deployed and applied broadly throughout the nuclear energy industry to enhance safety, reliability and economics.

The Hub's 10 core partners include: the Electric Power Research Institute, Idaho National Laboratory, Los Alamos National Laboratory, Massachusetts Institute of Technology, North Carolina State University, Sandia National Laboratories, Tennessee Valley Authority, University of Michigan, Westinghouse Electric Company and Oak Ridge National Laboratory. More information about CASL is available at http://www.casl.gov.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>