Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CASL milestone validates reactor model using TVA data

11.07.2013
Today, the Consortium for Advanced Simulation of Light Water Reactors (CASL) announced that its scientists have successfully completed the first full-scale simulation of an operating nuclear reactor.

CASL is modeling nuclear reactors on supercomputers to help researchers better understand reactor performance with much higher reliability than previously available methods, with the goal of ultimately increasing power output, extending reactor life, and reducing waste.


This CASL visualization shows the thermal distribution of neutrons in Watts Bar Unit 1 Cycle 1 reactor core at initial criticality, as calculated by the VERA program. Image courtesy of Oak Ridge National Laboratory

Simulation results from the Virtual Environment for Reactor Applications (VERA) program, developed by CASL, were compared with actual data provided by the Tennessee Valley Authority's (TVA) Watts Bar Nuclear Plant in Tennessee, which confirmed its accuracy.

"VERA's capabilities range from simulating single fuel pins to modeling an entire operational reactor core," said Jess Gehin of Oak Ridge National Laboratory's Reactor and Nuclear Systems Division. "It addresses operational challenges and supports increased power generation by exploring greater efficiency and life extensions."

During cycle startup of commercial nuclear power reactors, technicians perform a series of tests to confirm the reactor is operating as expected. For CASL, results of previous tests are useful for demonstrating the accuracy of the VERA software. As a CASL partner, TVA provided detailed historical information and measured operational data from the Watts Bar plant to allow comparisons of the VERA simulation.

The simulations of the reactor startup tests are just a first step in the demonstration of VERA. CASL is extending the program's capability to simulate full power operation of the TVA reactor, which will require further VERA development to integrate the nuclear and thermal hydraulic physics. These additional capabilities will allow researchers to pursue breakthroughs in understanding key phenomena in the operating reactors.

CASL, headquartered at ORNL, is one of the Department of Energy's Energy Innovation Hubs. First established in 2010, CASL brings together industry, academia, and national labs to provide advanced modeling and simulation solutions for commercial reactors. Its mission is to confidently predict the performance of nuclear reactors through comprehensive science-based modeling and simulation technology that is deployed and applied broadly throughout the nuclear energy industry to enhance safety, reliability and economics.

The Hub's 10 core partners include: the Electric Power Research Institute, Idaho National Laboratory, Los Alamos National Laboratory, Massachusetts Institute of Technology, North Carolina State University, Sandia National Laboratories, Tennessee Valley Authority, University of Michigan, Westinghouse Electric Company and Oak Ridge National Laboratory. More information about CASL is available at http://www.casl.gov.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>