Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon scientist confirms liquid-liquid phase transition in silicon

18.03.2009
Using rigorous computer calculations, researchers from Carnegie Mellon University and the Carnegie Institution of Washington have established evidence that supercooled silicon experiences a liquid-liquid phase transition, where at a certain temperature two different states of liquid silicon exist.

The two states each have unique properties that could be used to develop new silicon-based materials. Furthermore, the methods developed can be applied to gain a better understanding of other materials.

The findings will be presented Friday, March 20 at the American Physical Society's March Meeting in Pittsburgh. The results also were published as an Editor's Selection in the Feb. 20 issue of Physical Review Letters.

Under normal conditions, phase transitions occur when the structure of a substance changes in response to a change in temperature and/or pressure. The most commonly thought of phase transitions are between solids, liquids and gases. However, it was recently discovered that some substances experience phase transitions within the same state, resulting in two different forms with their own individual characteristics. For example, it's thought that water has a liquid-liquid transition.

"Water and silicon share many unusual characteristics. For example, in most materials, their solid states are denser than their liquid states, but in water and silicon the opposite is true. That's why ice floats on water and solid silicon floats on liquid silicon," said Michael Widom, professor of physics at Carnegie Mellon. "The unusual volume expansion of frozen water and silicon that causes them to float is probably connected to the existence of a liquid-liquid transition."

Like water, it has been hypothesized that supercooled silicon — liquid silicon that has its temperature lowered to below the freezing point without crystallizing and becoming a solid — experienced a liquid-liquid phase shift. Computer simulations initially predicted the existence of two liquid phases, but further simulations and experiments failed to produce the necessary evidence to prove their presence.

To resolve the disparity between the prior experiments, Carnegie Mellon's Widom and Carnegie Institute of Washington post-doc Panchapakesan Ganesh, who began this work as a graduate student in Widom's lab, used rigorous first-principles calculations based on quantum mechanics to, for the first time, prove the existence of a liquid-liquid transition in silicon. First-principle calculations start with established laws of physics, and make no assumptions or approximations, leaving little room for question. Such calculations provide the most accurate predictions for the structural properties at high pressures and temperature, since conducting actual experiments in these conditions is near impossible.

Since the calculations are based on quantum mechanics, they were extremely complex and time-consuming. It took one month of computing time to complete the calculations needed to determine the molecular dynamics of silicon at one single experimental temperature and volume. The researchers applied novel methods of parallel tempering and histogram data analysis to look at nine temperatures and 12 volumes. The calculations required nine CPU years to be completed, but the experiment took only one actual calendar year because the calculations ran in parallel on many computers.

The computations revealed that a liquid-to-liquid phase shift, evidenced by the presence of a van der Waals loop, occurred when silicon was supercooled to 1200 degrees Kelvin; silicon normally freezes at 1700 degrees Kelvin. A van der Waals loop occurs when pressure grows as volume increases, marking a thermodynamically unstable situation. The unstable condition is resolved by transforming into two coexisting states of differing densities — in this case two distinct forms of liquid silicon, each having its own unique and dissimilar properties. One was high density and highly coordinated with metallic properties, much like normal liquid silicon, and the other was low density, low-coordinated and semi-metallic, with a structure closer to that of solid silicon.

"This study shows that accurate calculations based on quantum mechanics can now answer long-standing questions about familiar and unfamiliar materials," Widom said.

The simulation methods used by the researchers are a breakthrough on their own. The computational methods can be applied to achieve a better understanding of a wide range of elements and molecules and how they behave at extremely high temperatures. Revealing the structure and properties of different elements and compounds at previously untestable conditions could lead to the development of new materials with commercial applications. Widom, for example, is now using the tools to study metallic glass, a solid metal with the structure of a liquid that contain desirable properties not found in commonly used alloys.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>