Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carlos '97 free kick no fluke, say French physicists

02.09.2010
Roberto Carlos' free kick goal against France in 1997's Tournoi de France is thought by many to have been the most skilful free kick goal - from 35m with a powerful curling banana trajectory - ever scored; but by others to have been an incredible fluke.

Taken in 1997, a year before the French won the World Cup, Brazilian Carlos's goal held France to a frustrating draw but, now, a group of French physicists – perhaps with a nostalgic eye to a happier time for French football – have computed the trajectory and shown that Carlos' goal was no fluke.

The research published today, Thursday 2 September, in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society), explains why French goalkeeper Fabien Barthez made no move for the ball (but why a ball-boy ten metres from the goal did duck to safety) as the ball made a last moment sweep left and landed in the back of the net.

Using tiny plastic (polypropylene and polyacetal) balls and a slingshot, the French research team from the École Polytechnique in Palaiseau varied the velocity and spin of balls travelling through water to trace different trajectories.

While their research quickly confirmed the long-known Magnus effect, which gives a spinning ball a curved trajectory, their research revealed fresh insight for spinning balls that are shot over a distance equivalent to Roberto Carlos' free kick.

The friction exerted on a ball by its surrounding atmosphere slows it down enough for the spin to take on a greater role in directing the ball's trajectory, thereby allowing the last moment change in direction, which in the case of Carlos' kick left Barthez defenceless.

The researchers refer to their discovery as the 'spinning ball spiral', comparing the spiraling effects of Roberto Carlos's kick with the shorter-distance (20-25m) 'circular' free kicks shot by the likes of Beckham and Platini.

As Christophe Clanet and David Quéré, researchers from École Polytechnique, write, "When shot from a large enough distance, and with enough power to keep an appreciable velocity as approaching the goal, the ball can have an unexpected trajectory. Carlos' kick started with a classical circular trajectory but suddenly bent in a spectacular way and came back to the goal, although it looked out of the target a small moment earlier.

"People often noticed that Carlos' free kick had been shot from a remarkably long distance; we show in our paper that this is not a coincidence, but a necessary condition for generating a spiral trajectory."

The researchers' paper can be downloaded from Thursday 2 September 2010 here: http://iopscience.iop.org/1367-2630/12/9/093001.

Carlos' free kick can be seen on YouTube here: http://www.youtube.com/watch?v=30Vy5Fesy_E

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>