Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon wears a halo

25.05.2010
Discovery of the heaviest known Borromean nucleus provides a new testing ground for fundamental nuclear models

In addition to lithium-11 and berrylium-14, the neutron-rich isotope carbon-22 (22C) could also be a Borromean ‘halo’ nucleus, a team of researchers from Japan has reported in Physical Review Letters. The finding will allow physicists to test fundamental nuclear models in nuclei containing a high ratio of neutrons to protons.

To a good approximation, the atomic nucleus is a uniformly dense distribution of protons and neutrons packed into a spherical drop a few femtometers (10-15 m) in radius. However, isotopes that contain more than 2 to 3 neutrons for every proton start to ‘leak’ neutrons. For a very few of these neutron rich nuclei, one or two excess neutrons form a loosely bound orbit—or halo—about the nuclear core.

The two-neutron halo nucleus is a special quantum three-body system: if one of the neutrons in the halo is removed, the remaining part falls apart. This interdependent system of two neutrons and a core is called a ‘Borromean’ nucleus, because of its similarity to the three, interlocked Borromean rings.

“[Previously], only the instability of 21C suggested that 22C might be a Borromean nucleus, and hence have a two-neutron halo,” explains Kanenobu Tanaka from the RIKEN Nishina Center for Accelerator-Based Science in Wako. “To study [whether 22C has the halo structure], we assembled a large-scale collaboration among institutions with expertise on many techniques. For example, special detector settings had to be prepared and creating the beams of carbon isotopes required careful tuning.”

Nuclei with a high neutron-to-proton ratio are unstable and can only be made artificially. Using the RIKEN projectile fragment separator (RIPS) the researchers produced three isotopes of carbon—19C, 20C and 22C—from the fragments of a high-energy beam of argon that impinged on a tantalum target. They then bombarded the carbon nuclei against a liquid hydrogen cell. Since larger nuclei are more likely to strike the hydrogen protons in the liquid, the researchers could determine the size of each carbon isotope by measuring its frequency of collision.

Tanaka and colleagues found that the radius of the 22C was about 5.4 fm, which is more than 50% larger than theoretical predictions, providing strong evidence that 22C is a halo nucleus and making it the heaviest Borromean nucleus ever observed.

“This finding opens the possibility to find halo nuclei in a more extended region of the nuclear chart and will give us greater insight into the mechanism of halo formation,” says Tanaka.

The corresponding author for this highlight is based at the Research Instruments Group BigRIPS Team, RIKEN Nishina Center for Accelerator-Based Science

Journal information

1. Tanaka, K., Yamaguchi, T., Suzuki, T., Ohtsubo, T., Fukuda, M., Nishimura, D., Takechi, M., Ogata, K., Ozawa, A. Izumikawa, T. et al. Observation of a large reaction cross section in the drip-line nucleus 22C. Physical Review Letters 104, 062701 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6273
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates

21.02.2018 | Life Sciences

Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region

21.02.2018 | Power and Electrical Engineering

A variety of designs for OLED lighting in one easy kit

21.02.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>