Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon wears a halo

25.05.2010
Discovery of the heaviest known Borromean nucleus provides a new testing ground for fundamental nuclear models

In addition to lithium-11 and berrylium-14, the neutron-rich isotope carbon-22 (22C) could also be a Borromean ‘halo’ nucleus, a team of researchers from Japan has reported in Physical Review Letters. The finding will allow physicists to test fundamental nuclear models in nuclei containing a high ratio of neutrons to protons.

To a good approximation, the atomic nucleus is a uniformly dense distribution of protons and neutrons packed into a spherical drop a few femtometers (10-15 m) in radius. However, isotopes that contain more than 2 to 3 neutrons for every proton start to ‘leak’ neutrons. For a very few of these neutron rich nuclei, one or two excess neutrons form a loosely bound orbit—or halo—about the nuclear core.

The two-neutron halo nucleus is a special quantum three-body system: if one of the neutrons in the halo is removed, the remaining part falls apart. This interdependent system of two neutrons and a core is called a ‘Borromean’ nucleus, because of its similarity to the three, interlocked Borromean rings.

“[Previously], only the instability of 21C suggested that 22C might be a Borromean nucleus, and hence have a two-neutron halo,” explains Kanenobu Tanaka from the RIKEN Nishina Center for Accelerator-Based Science in Wako. “To study [whether 22C has the halo structure], we assembled a large-scale collaboration among institutions with expertise on many techniques. For example, special detector settings had to be prepared and creating the beams of carbon isotopes required careful tuning.”

Nuclei with a high neutron-to-proton ratio are unstable and can only be made artificially. Using the RIKEN projectile fragment separator (RIPS) the researchers produced three isotopes of carbon—19C, 20C and 22C—from the fragments of a high-energy beam of argon that impinged on a tantalum target. They then bombarded the carbon nuclei against a liquid hydrogen cell. Since larger nuclei are more likely to strike the hydrogen protons in the liquid, the researchers could determine the size of each carbon isotope by measuring its frequency of collision.

Tanaka and colleagues found that the radius of the 22C was about 5.4 fm, which is more than 50% larger than theoretical predictions, providing strong evidence that 22C is a halo nucleus and making it the heaviest Borromean nucleus ever observed.

“This finding opens the possibility to find halo nuclei in a more extended region of the nuclear chart and will give us greater insight into the mechanism of halo formation,” says Tanaka.

The corresponding author for this highlight is based at the Research Instruments Group BigRIPS Team, RIKEN Nishina Center for Accelerator-Based Science

Journal information

1. Tanaka, K., Yamaguchi, T., Suzuki, T., Ohtsubo, T., Fukuda, M., Nishimura, D., Takechi, M., Ogata, K., Ozawa, A. Izumikawa, T. et al. Observation of a large reaction cross section in the drip-line nucleus 22C. Physical Review Letters 104, 062701 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6273
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>