Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

25.07.2017

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University (Germany) and the University of St Andrews (Scotland) used light-emitting and extremely stable transistors to reach strong light-matter coupling and create exciton-polaritons.


Artistic rendering of a light-emitting transistor with carbon nanotubes between two mirrors for electrical generation of polaritons.

Image credit: Dr Yuriy Zakharko, co-author

These particles may pave the way for new light sources, so-called electrically pumped polariton lasers, that could be manufactured with carbon nanotubes. These findings, published in "Nature Materials", are the result of a cooperation between Prof. Dr Jana Zaumseil (Heidelberg) and Prof. Dr Malte C. Gather (St Andrews).

In recent years, research on organic, carbon-based semiconductors for optoelectronic components has led to a variety of applications. Among them are light-emitting diodes for energy-efficient, high-resolution smartphone and TV screens.

Despite the rapid progress in this area, realising an electrically pumped laser from organic materials remains elusive. To get closer to this goal, researchers in Heidelberg and St Andrews are working on coupling light and matter in semiconducting carbon nanotubes – microscopically small, tube-shaped structures of carbon.

When photons (light) and excitons (matter) are made to exchange energy fast enough they form new quasi-particles, known as exciton-polaritons, that also emit light. Under certain conditions these emissions can take on the properties of laser light. Prof. Zaumseil explains that exciton-polaritons are currently investigated as a new way to generate laser-like light from organic materials and research in this area has increased significantly.

The team of researchers around Prof. Zaumseil and Prof. Gather previously showed that it is possible to form exciton-polaritons in semiconducting carbon nanotubes. But they used an external laser to stimulate the formation of the light-emitting quasi-particles.

In their current experiments, the researchers showed that it is possible to use electricity to generate these particles. To achieve this, they developed a light-emitting transistor with a dense layer to semiconducting carbon nanotubes that was embedded between two metallic mirrors.

Because of the extreme stability and high conductivity provided by the carbon nanotubes in this device, current densities and thus polariton densities were orders of magnitude above any previously reported values. Calculations by PhD student Arko Graf – one of the two lead authors of the study, show that the demonstration of an electrically pumped polariton laser is within realistic reach. As the emission of these light sources can be tuned across a wide range of the near-infrared spectrum, this work holds particular promise for applications in telecommunications.

Original publication:
A. Graf, M. Held, Y. Zakharko, L. Tropf, M.C. Gather and J. Zaumseil: Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nature Materials (published online 17 July 2017), doi: 10.1038/nmat4940

Contact:
Prof. Dr Jana Zaumseil
Institute of Physical Chemistry
Phone +49 6221 54-5065
zaumseil@uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.pci.uni-heidelberg.de/apc/zaumseil/index.html
http://gatherlab.wp.st-andrews.ac.uk

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>