Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Nanotube Avalanche Process Nearly Doubles Current

10.02.2009
By pushing carbon nanotubes close to their breaking point, researchers at the University of Illinois have demonstrated a remarkable increase in the current-carrying capacity of the nanotubes, well beyond what was previously thought possible.

The researchers drove semiconducting carbon nanotubes into an avalanche process that carries more electrons down more paths, similar to the way a multilane highway carries more traffic than a one-lane road.

“Single-wall carbon nanotubes are already known to carry current densities up to 100 times higher than the best metals like copper,” said Eric Pop, a professor of electrical and computer engineering at the U. of I. “We now show that semiconducting nanotubes can carry nearly twice as much current as previously thought.”

As reported in the journal Physical Review Letters, the researchers found that at high electric fields (10 volts per micron), energetic electrons and holes can create additional electron-hole pairs, leading to an avalanche effect where the free carriers multiply and the current rapidly increases until the nanotube breaks down.

The sharp increase in current, Pop said, is due to the onset of avalanche impact ionization, a phenomenon observed in certain semiconductor diodes and transistors at high electric fields, but not previously seen in nanotubes.

While the maximum current carrying capacity for metallic nanotubes has been measured at about 25 microamps, the maximum current carrying capacity for semiconducting nanotubes is less established. Previous theoretical predictions suggested a similar limit for single-band conduction in semiconducting nanotubes.

To study current behavior, Pop, graduate student Albert Liao and undergraduate student Yang Zhao first grew single-wall carbon nanotubes by chemical vapor deposition from a patterned iron catalyst. Palladium contacts were used for measurement purposes. The researchers then pushed the nanotubes close to their breaking point in an oxygen-free environment.

“We found that the current first plateaus near 25 microamps, and then sharply increases at higher electric fields,” said Pop, who also is affiliated with the Beckman Institute and the Micro and Nanotechnology Laboratory at the U. of I. ”We performed repeated measurements, obtaining currents of up to 40 microamps, nearly twice those of previous reports.”

By inducing very high electric fields in the nanotubes, the researchers drove some of the charge carriers into nearby subbands, as part of the avalanche process. Instead of being in just one “lane,” the electrons and holes could occupy several available lanes, resulting in much greater current.

The avalanche process (which cannot be observed in metallic carbon nanotubes because an energy gap is required for electron-hole multiplication) offers additional functionality to semiconducting nanotubes, Pop said. “Our results suggest that avalanche-driven devices with highly nonlinear turn-on characteristics can be fashioned from semiconducting single wall nanotubes.”

Funding was provided by the National Science Foundation and the National Institute of Standards and Technology through the Nanoelectronics Research Initiative.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0209nanotubes.html

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>