Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing brain activity with sculpted light

09.09.2013
Researchers in Vienna develop new imaging technique to study the function of entire nervous systems

Scientists at the Campus Vienna Biocenter (Austria) have found a way to overcome some of the limitations of light microscopy. Applying the new technique, they can record the activity of a worm’s brain with high temporal and spatial resolution, ultimately linking brain anatomy to brain function. The journal Nature Methods publishes the details in its current issue.


Frontal part of a nematode seen throgh a microscope. The neurons of the worm’s “brain” are coloured in green. Above are the discs of light generated by the WF-TeFo mikroscope, scanning the brain area and recording the activity of certain neurons (artist’s interpretation). IMP

A major aim of today’s neuroscience is to understand how an organism’s nervous system processes sensory input and generates behavior. To achieve this goal, scientists must obtain detailed maps of how the nerve cells are wired up in the brain, as well as information on how these networks interact in real time.

The organism many neuroscientists turn to in order to study brain function is a tiny, transparent worm found in rotting soil. The simple nematode C. elegans is equipped with just 302 neurons that are connected by roughly 8000 synapses. It is the only animal for which a complete nervous system has been anatomically mapped.

Researchers have so far focused on studying the activity of single neurons and small networks in the worm, but have not been able to establish a functional map of the entire nervous system. This is mainly due to limitations in the imaging-techniques they employ: the activity of single cells can be resolved with high precision, but simultaneously looking at the function of all neurons that comprise entire brains has been a major challenge. Thus, there was always a trade-off between spatial or temporal accuracy and the size of brain regions that could be studied.

Scientists at Vienna’s Research Institute of Molecular Pathology (IMP), the Max Perutz Laboratories (MFPL), and the Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS) of the University of Vienna have now closed this gap and developed a high speed imaging technique with single neuron resolution that bypasses these limitations. In a paper published online in Nature Methods, the teams of Alipasha Vaziri and Manuel Zimmer describe the technique which is based on their ability to “sculpt” the three-dimensional distribution of light in the sample. With this new kind of microscopy, they are able to record the activity of 70% of the nerve cells in a worm’s head with high spatial and temporal resolution.

“Previously, we would have to scan the focused light by the microscope in all three dimensions”, says quantum physicist Robert Prevedel. “That takes far too long to record the activity of all neurons at the same time. The trick we invented tinkers with the light waves in a way that allows us to generate “discs” of light in the sample. Therefore, we only have to scan in one dimension to get the information we need. We end up with three-dimensional videos that show the simultaneous activities of a large number of neurons and how they change over time.” Robert Prevedel is a Senior Postdoc in the lab of Alipasha Vaziri, who is an IMP-MFPL Group Leader and is heading the Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS) of the University of Vienna, where the new technique was developed.

However, the new microscopic method is only half the story. Visualising the neurons requires tagging them with a fluorescent protein that lights up when it binds to calcium, signaling the nerve cells’ activity. “The neurons in a worm’s head are so densely packed that we could not distinguish them on our first images”, explains neurobiologist Tina Schrödel, co-first author of the study. “Our solution was to insert the calcium sensor into the nuclei rather than the entire cells, thereby sharpening the image so we could identify single neurons.” Tina Schrödel is a Doctoral Student in the lab of the IMP Group Leader Manuel Zimmer.

The new technique that came about by a close collaboration of physicists and neurobiologists has great potentials beyond studies in worms, according to the researchers. It will open up the way for experiments that were not possible before. One of the questions that will be addressed is how the brain processes sensory information to “plan” specific movements and then executes them. This ambitious project will require further refinement of both the microscopy methods and computational methods in order to study freely moving animals. The team in Vienna is set to achieve this goal in the coming two years.

Publication in Nature Methods:
Tina Schrödel, Robert Prevedel, Karin Aumayr, Manuel Zimmer and Alipasha Vaziri: Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nature Methods (September 2013). DOI: http://dx.doi.org/10.1038/nmeth.2637
About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.
About MFPL
The Max F. Perutz Laboratories (MFPL) are a center established by the University of Vienna and the Medical University of Vienna to provide an environment for excellent, internationally recognized research and education in the field of Molecular Biology. Currently, the MFPL host around 60 independent research groups, involving more than 500 people from 40 nations.
Scientific Contact:
Ass. Prof. Dr. Alipasha Vaziri
Research Institute of Molecular Pathology (IMP)
Max F. Perutz Laboratories (MFPL) and Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Universität Wien
T +43-1-79730-3540
alipasha.vaziri@univie.ac.at
Dr. Manuel Zimmer
Research Institute of Molecular Pathology (IMP)
T +43-1-79730-3430
manuel.zimmer@imp.ac.at
Press Contact:
Dr. Heidemarie Hurtl
IMP Communications
T +43-1-79730-3625
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at/research/research-groups/vaziri-group/
http://www.imp.ac.at/research/research-groups/zimmer-group/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>