Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capture of nanomagnetic 'fingerprints' a boost for next-generation information storage media

30.01.2009
In the race to develop the next generation of storage and recording media, a major hurdle has been the difficulty of studying the tiny magnetic structures that will serve as their building blocks.

Now a team of physicists at the University of California, Davis, has developed a technique to capture the magnetic "fingerprints" of certain nanostructures – even when they are buried within the boards and junctions of an electronic device. This breakthrough in nanomagnetism was published in the Jan. 19 issue of Applied Physics Letters.

The past decade has witnessed a thousand-fold increase in magnetic recording area density, which has revolutionized the way information is stored and retrieved. These advances are based on the development of nanomagnet arrays which take advantage of the new field of spintronics: using electron spin as well as charge for information storage, transmission and manipulation.

But due to the miniscule physical dimensions of nanomagnets – some are as small as 50 atoms wide – observing their magnetic configurations has been a challenge, especially when they are not exposed but built into a functioning device.

"You can't take full advantage of these nanomagnets unless you can 'see' and understand their magnetic structures – not just how the atoms and molecules are put together, but how their electronic and magnetic properties vary accordingly," said Kai Liu, a professor and Chancellor's Fellow in physics at UC Davis. "This is difficult when the tiny nanomagnets are embedded and when there are billions of them in a device."

To tackle this challenge, Liu and three of his students, Jared Wong, Peter Greene and Randy Dumas, created copper nanowires embedded with magnetic cobalt nanodisks. Then they applied a series of magnetic fields to the wires and measured the responses from the nanodisks. By starting each cycle at full saturation – that is, using a field strong enough to align all the nanomagnets – then applying a progressively more negative field with each reversal, they created a series of information-rich graphic patterns known to physicists as "first-order reversal curve (FORC) distributions."

"Each pattern tells us a different story about what's going on inside the nanomagnets," Liu said. "We can see how they switch from one alignment to another, and get quantitative information about how many nanomagents are in one particular phase: for example, whether the magnetic moments are all pointing in the same direction or curling around a disk to form vortices. This in turn tells us how to encode information with these nanomagnets."

The technique will be applicable to a wide variety of physical systems that exhibit the kind of lag in response time (or hysteresis) as magnets, including ferroelectric, elastic and superconducting materials, Liu explained. "It's a powerful tool for probing variations, or heterogeneity, in the system, and real materials always have a certain amount of this."

Liese Greensfelder | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>