Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer is a result of a default cellular 'safe mode,' physicist proposes

With death rates from cancer have remained largely unchanged over the past 60 years, a physicist is trying to shed more light on the disease with a very different theory of its origin that traces cancer back to the dawn of multicellularity more than a billion years ago.

In this month's special issue of Physics World devoted to the "physics of cancer", Paul Davies, principal investigator at Arizona State University's Center for Convergence of Physical Sciences and Cancer Biology, explains his radical new theory.

Davies was brought in to lead the centre in 2009 having almost no experience in cancer research whatsoever. With a background in theoretical physics and cosmology, he was employed to bring fresh, unbiased eyes to the underlying principles of the disease.

He has since raised questions that are rarely asked by oncologists: thinking about why cancer exists at all and what place it holds in the grand story of life on Earth.

His new theory, drawn together with Charles Lineweaver of the Australian National University, suggests that cancer is a throwback to an ancient genetic "sub-routine" where the mechanisms that usually instruct cells when to multiply and die malfunctions, thus forcing the cells to revert back to a default option that was programmed into their ancestors long ago.

"To use a computer analogy, cancer is like Windows defaulting to 'safe mode' after suffering an insult of some sort," Davies writes.

The result of this malfunction is the start of a cascade of events that we identify as cancer – a runaway proliferation of cells that form a tumour, which eventually becomes mobile itself, spreading to other parts of the body and invading and colonizing.

Orthodox explanations suppose that cancer results from an accumulation of random genetic mutations, with the cancer starting from scratch each time it manifests; however, Davies and Lineweaver believe it is caused by a set of genes that have been passed on from our very early ancestors and are "switched on" in the very early stages of an organism's life as cells differentiate into specialist forms.

The pair suggests that the genes that are involved in the early development of the embryo – and that are silenced, or switched off, thereafter – become inappropriately reactivated in the adult as a result of some sort of trigger or damage, such as chemicals, radiation or inflammation.

"Very roughly, the earlier the embryonic stage, the more basic and ancient will be the genes guiding development, and the more carefully conserved and widely distributed they will be among species," Davies writes.

Several research teams around the world are currently providing experimental evidence that shows the similarities between the expression of genes in a tumour and an embryo, adding weight to Davies and Lineweaver's theory.

Davies makes it clear that radical new thinking is needed; however, just like ageing, he states that cancer cannot generally be cured but can be mitigated, which we can only do when we better understand the disease, and its place in the "great sweep of evolutionary history".

This month's special issue of Physics World can be downloaded free of charge from 1 July 2013 at

Please mention Physics World as the source of these items and, if publishing online, please include a hyperlink to:

Notes for editors:

1. Physics World is the international monthly magazine published by the Institute of Physics. For further information or details of its editorial programme, please contact the editor, Dr Matin Durrani, tel +44 (0)117 930 1002. The magazine's website is updated regularly and contains daily physics news and regular audio and video content. Visit

2. For copies of the articles reviewed here contact Mike Bishop, IOP press officer, tel +44 (0)11 7930 1032, e-mail

3. The Institute of Physics is a leading scientific society. We are a charitable organization with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policy-makers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Visit us at

Joseph Winters | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>