Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists discover storms in the tropics of Titan

13.08.2009
For all its similarities to Earth—clouds that pour rain (albeit liquid methane not liquid water) onto the surface producing lakes and rivers, vast dune fields in desert-like regions, plus a smoggy orange atmosphere that looks like Los Angeles's during fire season—Saturn's largest moon, Titan, is generally "a very bland place, weatherwise," says Mike Brown of the California Institute of Technology (Caltech).

"We can watch for years and see almost nothing happen. This is bad news for people trying to understand Titan's meteorological cycle, as not only do things happen infrequently, but we tend to miss them when they DO happen, because nobody wants to waste time on big telescopes—which you need to study where the clouds are and what is happening to them—looking at things that don't happen," explains Brown, the Richard and Barbara Rosenberg Professor of Planetary Astronomy.

However, just because weather occurs "infrequently" doesn't mean it never occurs, nor does it mean that astronomers, in the right place at the right time, can't catch it in the act.

That's just what Emily Schaller—then a graduate student of Brown's—and colleagues accomplished when they observed, in April 2008, a large system of storm clouds appear in the apparently dry mid-latitudes and then spread in a southeastward direction across the moon. Eventually, the storm generated a number of bright but transient clouds over Titan's tropical latitudes, a region where clouds had never been seen—and, indeed, where it was thought they were extremely unlikely to form.

Schaller, now a Hubble Postdoctoral Fellow at the University of Arizona, Brown, and their colleages; Henry Roe, a former Caltech postdoctoral scholar in Brown's group, now at the Lowell Observatory in Flagstaff; and Tapio Schneider, a professor of environmental science and engineering at Caltech, describe their work, and its implications for climate on Titan, in the August 13 issue of Nature.

"A couple of years ago, we set up a highly efficient system on a smaller telescope to figure out when to use the biggest telescopes," Brown says. The first telescope, NASA's Infrared Telescope Facility, on Mauna Kea, takes a spectrum of Titan almost every single night. "From that we can't tell much, but we can say 'no clouds,' 'a few clouds,' or, if we get lucky 'monster clouds,'" he explains.

Schaller explains, "The period during which I was collecting data for my thesis, sadly, corresponded entirely to an extended period of essentially no clouds, so we never really got to show the full power of the combined telescopes. But then, after finishing and turning in my thesis, I walked back across campus to my office to look at the data from the previous night to find that Titan suddenly had the biggest clouds ever. I like to think it was Titan's graduation gift to me. Or perhaps a bad joke."

The day after the telescope's big find (and Schaller's thesis submission), Schaller, Brown, and Roe began tracking the clouds with the large Gemini telescope on Mauna Kea and watched this system evolve for a month. "And what a cool show it was," Brown says.

"The first cloud was seen near the tropics and was caused by a still-mysterious process, but it behaved almost like an explosion in the atmosphere, setting off waves that traveled around the planet, triggering their own clouds. Within days a huge cloud system had covered the south pole, and sporadic clouds were seen all the way up to the equator."

Schneider, an expert on atmospheric circulations, was instrumental in helping to sort out the complicated chain of events that followed the initial outburst of cloud activity.

"The monthlong event has many important implications for understanding the hydrological cycle on Titan," says Brown, "but one of the reasons I am most excited about it is that it shows clouds near the equator—where the [European Space Agency's] Huygens probe landed—for the first time. For a while now, people have speculated that the equatorial regions are simply too dry to ever have significant clouds."

And yet, the images snapped by the Huygens probe in January 2005, as it descended through Titan's soupy atmosphere and toward the surface, revealed small-scale channels and streams, which looked just like features created by fluids—by water, here on Earth, and on Titan, probably by liquid methane.

Experts had speculated for years on how there could be streams and channels in a region with no rain. The new results suggest those speculations may prove unneccessary. "No one considered how storms in one location can trigger them in many other locations," says Brown.

The paper, "Storms in the tropics of Titan," appears in the August 13 issue of Nature. The research was supported by a Hubble Postdoctoral Fellowship (to Schaller), the NASA Planetary Astronomy Program, and a Planetary Astronomy Grant from the National Science Foundation.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://media.caltech.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>