Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech scientists discover storms in the tropics of Titan

13.08.2009
For all its similarities to Earth—clouds that pour rain (albeit liquid methane not liquid water) onto the surface producing lakes and rivers, vast dune fields in desert-like regions, plus a smoggy orange atmosphere that looks like Los Angeles's during fire season—Saturn's largest moon, Titan, is generally "a very bland place, weatherwise," says Mike Brown of the California Institute of Technology (Caltech).

"We can watch for years and see almost nothing happen. This is bad news for people trying to understand Titan's meteorological cycle, as not only do things happen infrequently, but we tend to miss them when they DO happen, because nobody wants to waste time on big telescopes—which you need to study where the clouds are and what is happening to them—looking at things that don't happen," explains Brown, the Richard and Barbara Rosenberg Professor of Planetary Astronomy.

However, just because weather occurs "infrequently" doesn't mean it never occurs, nor does it mean that astronomers, in the right place at the right time, can't catch it in the act.

That's just what Emily Schaller—then a graduate student of Brown's—and colleagues accomplished when they observed, in April 2008, a large system of storm clouds appear in the apparently dry mid-latitudes and then spread in a southeastward direction across the moon. Eventually, the storm generated a number of bright but transient clouds over Titan's tropical latitudes, a region where clouds had never been seen—and, indeed, where it was thought they were extremely unlikely to form.

Schaller, now a Hubble Postdoctoral Fellow at the University of Arizona, Brown, and their colleages; Henry Roe, a former Caltech postdoctoral scholar in Brown's group, now at the Lowell Observatory in Flagstaff; and Tapio Schneider, a professor of environmental science and engineering at Caltech, describe their work, and its implications for climate on Titan, in the August 13 issue of Nature.

"A couple of years ago, we set up a highly efficient system on a smaller telescope to figure out when to use the biggest telescopes," Brown says. The first telescope, NASA's Infrared Telescope Facility, on Mauna Kea, takes a spectrum of Titan almost every single night. "From that we can't tell much, but we can say 'no clouds,' 'a few clouds,' or, if we get lucky 'monster clouds,'" he explains.

Schaller explains, "The period during which I was collecting data for my thesis, sadly, corresponded entirely to an extended period of essentially no clouds, so we never really got to show the full power of the combined telescopes. But then, after finishing and turning in my thesis, I walked back across campus to my office to look at the data from the previous night to find that Titan suddenly had the biggest clouds ever. I like to think it was Titan's graduation gift to me. Or perhaps a bad joke."

The day after the telescope's big find (and Schaller's thesis submission), Schaller, Brown, and Roe began tracking the clouds with the large Gemini telescope on Mauna Kea and watched this system evolve for a month. "And what a cool show it was," Brown says.

"The first cloud was seen near the tropics and was caused by a still-mysterious process, but it behaved almost like an explosion in the atmosphere, setting off waves that traveled around the planet, triggering their own clouds. Within days a huge cloud system had covered the south pole, and sporadic clouds were seen all the way up to the equator."

Schneider, an expert on atmospheric circulations, was instrumental in helping to sort out the complicated chain of events that followed the initial outburst of cloud activity.

"The monthlong event has many important implications for understanding the hydrological cycle on Titan," says Brown, "but one of the reasons I am most excited about it is that it shows clouds near the equator—where the [European Space Agency's] Huygens probe landed—for the first time. For a while now, people have speculated that the equatorial regions are simply too dry to ever have significant clouds."

And yet, the images snapped by the Huygens probe in January 2005, as it descended through Titan's soupy atmosphere and toward the surface, revealed small-scale channels and streams, which looked just like features created by fluids—by water, here on Earth, and on Titan, probably by liquid methane.

Experts had speculated for years on how there could be streams and channels in a region with no rain. The new results suggest those speculations may prove unneccessary. "No one considered how storms in one location can trigger them in many other locations," says Brown.

The paper, "Storms in the tropics of Titan," appears in the August 13 issue of Nature. The research was supported by a Hubble Postdoctoral Fellowship (to Schaller), the NASA Planetary Astronomy Program, and a Planetary Astronomy Grant from the National Science Foundation.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu
http://media.caltech.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>