Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caltech physicists create first nanoscale mass spectrometer

24.07.2009
Device can instantly measure the mass of an individual molecule

Using devices millionths of a meter in size, physicists at the California Institute of Technology (Caltech) have developed a technique to determine the mass of a single molecule, in real time.

The mass of molecules is traditionally measured using mass spectrometry, in which samples consisting of tens of thousands of molecules are ionized, to produce charged versions of the molecules, or ions. Those ions are then directed into an electric field, where their motion, which is choreographed by both their mass and their charge, allows the determination of their so-called mass-to-charge ratio. From this, their mass can ultimately be ascertained.

The new technique, developed over 10 years of effort by Michael L. Roukes, a professor of physics, applied physics, and bioengineering at the Caltech and codirector of Caltech's Kavli Nanoscience Institute, and his colleagues, simplifies and miniaturizes the process through the use of very tiny nanoelectromechanical system (NEMS) resonators. The bridge-like resonators, which are 2 micrometers long and 100 nanometers wide, vibrate at a high frequency and effectively serve as the "scale" of the mass spectrometer.

"The frequency at which the resonator vibrates is directly proportional to its mass," explains research physicist Askshay Naik, the first author of a paper about the work that appears in the latest issue of the journal Nature Nanotechnology. Changes in the vibration frequency, then, correspond to changes in mass.

"When a protein lands on the resonator, it causes a decrease in the frequency at which the resonator vibrates and the frequency shift is proportional to the mass of the protein," Naik says.

As described in the paper, the researchers used the instrument to test a sample of the protein bovine serum albumin (BSA), which is known to have a mass of 66 kilodaltons (kDa; a dalton is a unit of mass used to describe atomic and molecular masses, with one dalton approximately equal to the mass of one hydrogen atom).

The BSA protein ions are produced in vapor form using an electrospray ionization (ESI) system.The ions are then sprayed on to the NEMS resonator, which vibrates at a frequency of 450 megahertz. "The flux of proteins reaching the NEMS is such that only one to two protein lands on the resonator in a minute," Naik says.

When the BSA protein molecule is dropped onto the resonator, the resonator's vibration frequency decreases by as much as 1.2 kiloHertz—a small, but readily detectable, change. In contrast, the beta-amylase protein molecule, which has a mass of about 200 kDa, or three times that of BSA, causes a maximum frequency shift of about 3.6 kHz.

In principle, Naik says, it should be possible to use the system to detect one dalton differences in mass, the equivalent of a single hydrogen atom, but this will require a next-generation of nanowire-based devices that are smaller and have even better noise performance.

Because the location where the protein lands on the resonator also affects the frequency shift—falling onto the center of the resonator causes a larger change than landing on the end or toward the sides, for example—"we can't tell the mass with a single measurement, but needed about 500 frequency jumps in the published work," Naik says. In future, the researchers will decouple measurements of the mass and the landing position of the molecules being sampled. This technique, which they have already prototyped, will soon enable mass spectra for complicated mixtures to be built up, molecule-by molecule.

Eventually, Roukes and colleagues hope to create arrays of perhaps hundreds of thousands of the NEMS mass spectrometers, working in parallel, which could determine the masses of hundreds of thousands of molecules "in an instant," Naik says.

As Roukes points out, "the next generation of instrumentation for the life sciences—especially those for systems biology, which allows us to reverse-engineer biological systems—must enable proteomic analysis with very high throughput. The potential power of our approach is that it is based on semiconductor microelectronics fabrication, which has allowed creation of perhaps mankind's most complex technology."

The paper, "Towards single-molecule nanomechanical mass spectrometry," appears in the July 4 issue of Nature Nanotechnology. The other authors of the paper are graduate student Mehmet S. Hanay and staff scientist Philip Feng, from Caltech, and Wayne K. Hiebert of the National Research Council of Canada. The work was supported by the National Institutes of Health and, indirectly, by the Defense Advanced Research Projects Agency and the Space and Naval Warfare Systems Command.

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>