Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculations show Saturn's rings may be more massive, older

23.09.2008
Saturn’s rings may be more massive than previously thought, and potentially much older, according to calculations that simulate colliding particles in Saturn’s rings and their erosion by meteorites.

These results support the possibility that Saturn’s rings formed billions of years ago, perhaps at the time when giant impacts excavated the great basins on the Moon. The findings also suggest that giant exoplanets may also commonly have rings.

Dr Larry Esposito, Principal Investigator of Cassini’s UVIS instrument, will be presenting the results at the European Planetary Science Congress in Münster on Tuesday 23rd September.

“Both Cassini observations and theoretical calculations can allow the rings of Saturn to be billions of years old. This means we humans are not just lucky to see rings around Saturn. This would lead us to expect massive rings also to surround giant planets circling other stars,” said Dr Esposito.

Esposito’s colleagues at the University of Colorado, Glen Stewart and Stuart Robbins, have computed the gravitational attraction and collisions between more than 100,000 particles, representing a sample of those in Saturn’s rings. They followed the orbit and history of each individual particle, and calculate the amount of starlight that would pass through the ring. These results have been compared to Cassini observations of starlight blocked by the rings, which has traditionally been used to estimate the total amount of material in the ring system. Esposito used this method in 1983 to estimate that rings of Saturn contain as much material as Saturn’s small moon Mimas, which is about 250 miles across. The new simulations show Saturn’s ring particles aggregate into clumps, which would lead to the previous estimate being low by a factor of 3 or more.

Calculations by Esposito and his student Joshua Elliott show that meteorites slowly grind and shatter the particles in the ring. Gradually, a layer of dust and fragments builds up and covers each particle. This layer includes both ice (from the particle) and meteoritic dust. As time passes, the ring system is more polluted and darkened by meteoritic dust.

Because the rings appear so clean and bright, it was argued that the rings of Saturn were much younger than Saturn, which is some 4.5 billion years old. It was calculated from Voyager measurements that the rings are only about 100 million years old, approximately as ancient as when dinosaurs inhabited the Earth. The new calculations show that if the rings are more massive, they appear less polluted, and thus could be proportionately older. Recycling of ring material extends their lifetime and reduces the expected darkening.

One problem with this proposal for more massive and ancient rings is that the Pioneer 11 space mission to Saturn in 1979 measured the ring mass indirectly by observing charged particles created by cosmic rays bombarding the rings.

“Those mass estimates were similar to the ones from Voyager star occultations, apparently confirming the previous low mass value. However, we now recognize that the charged particles are double-valued. That means they could arise from either a small or large mass. We now see that the larger mass value could be consistent with the underestimates due to ring clumpiness,” said Dr Esposito.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>