Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HI-C sounding rocket mission has finest mirrors ever made

09.07.2012
NASA scientists will launch into space the highest resolution solar telescope ever to observe the solar corona, the million degree outer solar atmosphere.

The instrument, called HI-C for High Resolution Coronal Imager, will fly aboard a Black Brant sounding rocket to be launched from the White Sands Missile Range in New Mexico. The mission will have just 620 seconds for its flight, spending about half of that time high enough that Earth's atmosphere will not block ultraviolet rays from the sun. By looking at a specific range of UV light, HI-C scientists hope to observe fundamental structures on the sun, as narrow as 100 miles across.


Waiting for launch: NASA's HI-C mission, sitting in the front of this image, will launch on July 11, 2012, to observe the sun's corona in the highest detail ever captured during a 381-second flight. Credit: NASA

"Other instruments in space can't resolve things that small, but they do suggest – after detailed computer analysis of the amount of light in any given pixel – that structures in the sun's atmosphere are about 100 miles across," says Jonathan Cirtain, a solar scientist at NASA's Marshall Space Flight Center in Huntsville, Ala. who is the project scientist for HI-C. "And we also have theories about the shapes of structures in the atmosphere, or corona, that expect that size. HI-C will be the first chance we have to see them."

The spatial resolution on HI-C is some five times more detailed than the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory (SDO), that can resolve structures down to 600 miles and currently sends back some of our most stunning and scientifically useful images of the sun. Of course, AIA can see the entire sun at this resolution, while HI-C will focus on an area just one-sixth the width of the sun or 135,000 miles across. Also, AIA observes the sun in ten different wavelengths, while HI-C will observe just one: 193 Angstroms. This wavelength of UV light corresponds to material in the sun at temperatures of 1.5 million Kelvin and that wavelength is typically used to observe material in the corona.

During its ten-minute journey, HI-C will focus on the center of the sun, where a large sunspot is predicted to be – a prediction based on what the sun looked like 27 days previously, since it takes 27 days for the sun to complete a full rotation.

"We will start acquiring data at 69 seconds after launch, at a rate of roughly an image a second," says Cirtain. "We will be able to look through a secondary H-alpha telescope on the instrument in real time and re-point the main telescope as needed."

In addition to seeing the finest structures yet seen in the sun's corona, the launch of HI-C will serve as a test bed for this high-resolution telescope. Often one improves telescope resolution simply by building bigger mirrors, but this is not possible when constraining a telescope to the size of a sounding rocket, or even a long-term satellite. So HI-C's mirror is only about nine and a half inches across, no bigger than that of AIA. However, the HI-C mirrors, made by a team at Marshall, are some of the finest ever made, says Cirtain. If one could see the surface at an atomic level, it would show no greater valleys or peaks than two atoms in either direction.

"So it's super smooth," says Cirtain.

In addition, the team created a longer focal length – that is, they increased the distance the light travels from its primary mirror to its secondary mirror, another trick to improve resolution – by creating a precise inner maze for the light to travel from mirror to mirror, rather than a simple, shorter straight line.

NASA's Marshall Space Flight Center is leading the international effort for Hi-C. Key partners include the University of Alabama at Huntsville, Smithsonian Astrophysical Observatory, University of Central Lancashire in Lancashire, England, and the Lebedev Physical Institute of the Russian Academy of Sciences.

Karen Fox | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: AIA Hi-C Huntsville Observatory Space UV light sounding rocket

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>