Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HI-C sounding rocket mission has finest mirrors ever made

09.07.2012
NASA scientists will launch into space the highest resolution solar telescope ever to observe the solar corona, the million degree outer solar atmosphere.

The instrument, called HI-C for High Resolution Coronal Imager, will fly aboard a Black Brant sounding rocket to be launched from the White Sands Missile Range in New Mexico. The mission will have just 620 seconds for its flight, spending about half of that time high enough that Earth's atmosphere will not block ultraviolet rays from the sun. By looking at a specific range of UV light, HI-C scientists hope to observe fundamental structures on the sun, as narrow as 100 miles across.


Waiting for launch: NASA's HI-C mission, sitting in the front of this image, will launch on July 11, 2012, to observe the sun's corona in the highest detail ever captured during a 381-second flight. Credit: NASA

"Other instruments in space can't resolve things that small, but they do suggest – after detailed computer analysis of the amount of light in any given pixel – that structures in the sun's atmosphere are about 100 miles across," says Jonathan Cirtain, a solar scientist at NASA's Marshall Space Flight Center in Huntsville, Ala. who is the project scientist for HI-C. "And we also have theories about the shapes of structures in the atmosphere, or corona, that expect that size. HI-C will be the first chance we have to see them."

The spatial resolution on HI-C is some five times more detailed than the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory (SDO), that can resolve structures down to 600 miles and currently sends back some of our most stunning and scientifically useful images of the sun. Of course, AIA can see the entire sun at this resolution, while HI-C will focus on an area just one-sixth the width of the sun or 135,000 miles across. Also, AIA observes the sun in ten different wavelengths, while HI-C will observe just one: 193 Angstroms. This wavelength of UV light corresponds to material in the sun at temperatures of 1.5 million Kelvin and that wavelength is typically used to observe material in the corona.

During its ten-minute journey, HI-C will focus on the center of the sun, where a large sunspot is predicted to be – a prediction based on what the sun looked like 27 days previously, since it takes 27 days for the sun to complete a full rotation.

"We will start acquiring data at 69 seconds after launch, at a rate of roughly an image a second," says Cirtain. "We will be able to look through a secondary H-alpha telescope on the instrument in real time and re-point the main telescope as needed."

In addition to seeing the finest structures yet seen in the sun's corona, the launch of HI-C will serve as a test bed for this high-resolution telescope. Often one improves telescope resolution simply by building bigger mirrors, but this is not possible when constraining a telescope to the size of a sounding rocket, or even a long-term satellite. So HI-C's mirror is only about nine and a half inches across, no bigger than that of AIA. However, the HI-C mirrors, made by a team at Marshall, are some of the finest ever made, says Cirtain. If one could see the surface at an atomic level, it would show no greater valleys or peaks than two atoms in either direction.

"So it's super smooth," says Cirtain.

In addition, the team created a longer focal length – that is, they increased the distance the light travels from its primary mirror to its secondary mirror, another trick to improve resolution – by creating a precise inner maze for the light to travel from mirror to mirror, rather than a simple, shorter straight line.

NASA's Marshall Space Flight Center is leading the international effort for Hi-C. Key partners include the University of Alabama at Huntsville, Smithsonian Astrophysical Observatory, University of Central Lancashire in Lancashire, England, and the Lebedev Physical Institute of the Russian Academy of Sciences.

Karen Fox | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: AIA Hi-C Huntsville Observatory Space UV light sounding rocket

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>