Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hi-C to Investigate Activity in Solar Atmosphere

02.07.2012
NASA's Marshall Space Flight Center in Huntsville, Ala. is leading an international effort to develop and launch the High Resolution Coronal Imager, or Hi-C, on a sounding rocket from the White Sands Missile Range at White Sands, N.M. Hi-C is a next-generation suborbital space telescope designed to capture the highest-resolution images ever taken of the million-degree solar corona.

Key partners include the University of Alabama at Huntsville, Smithsonian Astrophysical Observatory, University of Central Lancashire in Lancashire, England, and the Lebedev Physical Institute of the Russian Academy of Sciences.


Hi-C will image the Sun at a 5x higher resolution (0.1 arcsec/pixel image) than any previously done. The mission will demonstrate the technology necessary to collect 150-kilometer-resolution images of the sun in the extreme ultraviolet spectrum. Using a resolution 5 times greater than any previous imager, Hi-C will observe the small-scale processes that exist everywhere in hot magnetized coronal plasma. Above image is 0.5 arcsec/pixel. (NASA)

Understanding the sun's activity and its effects on Earth's environment is the critical scientific objective of Hi-C, which will provide unique, unprecedented views of the dynamic activity in the solar atmosphere.

The telescope is slated for launch in July 2012. It will fly aboard a Black Brant sounding rocket to be launched from the White Sands Missile Range in New Mexico.

The mission will demonstrate the technology necessary to collect 150-kilometer-resolution images of the sun in the extreme ultraviolet spectrum. Using a resolution 5 times greater than any previous imager, Hi-C will observe the small-scale processes that exist everywhere in hot magnetized coronal plasma. Additionally, the mission is designed to study the mechanisms for growth, diffusion and reconnection of magnetic fields of the corona, and to help understand the coupling of small-scale dynamic and eruptive processes to large scale dynamics.

A major scientific impact of Hi-C will be to place significant new constraints on theories of coronal heating and structuring, by establishing whether or not there is additional fine structure below the current level of resolution.

"This instrument could push the limits on theories of coronal heating, answering questions such as why the temperature of the sun's corona is millions of degrees higher than that of the surface," said Marshall heliophysicist, Dr. Jonathan Cirtain, who is Principle Investigator, on the Hi-C mission.

"Hinode has shown that current instrumentation used for coronal structure studies has insufficient resolution to separate individual features along the line-of-sight," Cirtain said. "Hi-C will accomplish this measurement, with margin".

For more information about NASA and agency programs, please visit: http://www.nasa.gov Janet Anderson
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
janet.l.anderson@nasa.gov

karen fox | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Cirtain Flight Hi-C Huntsville Investigate Lancashire Missile Solar Decathlon Space activity atmosphere magnetic field

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>