Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hi-C to Investigate Activity in Solar Atmosphere

NASA's Marshall Space Flight Center in Huntsville, Ala. is leading an international effort to develop and launch the High Resolution Coronal Imager, or Hi-C, on a sounding rocket from the White Sands Missile Range at White Sands, N.M. Hi-C is a next-generation suborbital space telescope designed to capture the highest-resolution images ever taken of the million-degree solar corona.

Key partners include the University of Alabama at Huntsville, Smithsonian Astrophysical Observatory, University of Central Lancashire in Lancashire, England, and the Lebedev Physical Institute of the Russian Academy of Sciences.

Hi-C will image the Sun at a 5x higher resolution (0.1 arcsec/pixel image) than any previously done. The mission will demonstrate the technology necessary to collect 150-kilometer-resolution images of the sun in the extreme ultraviolet spectrum. Using a resolution 5 times greater than any previous imager, Hi-C will observe the small-scale processes that exist everywhere in hot magnetized coronal plasma. Above image is 0.5 arcsec/pixel. (NASA)

Understanding the sun's activity and its effects on Earth's environment is the critical scientific objective of Hi-C, which will provide unique, unprecedented views of the dynamic activity in the solar atmosphere.

The telescope is slated for launch in July 2012. It will fly aboard a Black Brant sounding rocket to be launched from the White Sands Missile Range in New Mexico.

The mission will demonstrate the technology necessary to collect 150-kilometer-resolution images of the sun in the extreme ultraviolet spectrum. Using a resolution 5 times greater than any previous imager, Hi-C will observe the small-scale processes that exist everywhere in hot magnetized coronal plasma. Additionally, the mission is designed to study the mechanisms for growth, diffusion and reconnection of magnetic fields of the corona, and to help understand the coupling of small-scale dynamic and eruptive processes to large scale dynamics.

A major scientific impact of Hi-C will be to place significant new constraints on theories of coronal heating and structuring, by establishing whether or not there is additional fine structure below the current level of resolution.

"This instrument could push the limits on theories of coronal heating, answering questions such as why the temperature of the sun's corona is millions of degrees higher than that of the surface," said Marshall heliophysicist, Dr. Jonathan Cirtain, who is Principle Investigator, on the Hi-C mission.

"Hinode has shown that current instrumentation used for coronal structure studies has insufficient resolution to separate individual features along the line-of-sight," Cirtain said. "Hi-C will accomplish this measurement, with margin".

For more information about NASA and agency programs, please visit: Janet Anderson
Marshall Space Flight Center, Huntsville, Ala.

karen fox | EurekAlert!
Further information:

Further reports about: Cirtain Flight Hi-C Huntsville Investigate Lancashire Missile Solar Decathlon Space activity atmosphere magnetic field

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>