Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursting neurons follow the same beat, sometimes

13.09.2011
A simplified mathematical model of the brain’s neural circuitry shows that repetitious, overlapped firing of neurons can lead to the waves of overly synchronized brain activity that may cause the halting movements that are a hallmark of Parkinson’s disease.

The model provides a tool in the quest to gain a better understanding of the mechanisms behind this incurable degenerative disorder.

Researchers from IUPUI (Indiana University-Purdue University Indianapolis) reduced the complex biology of the basal ganglia, a part of the brain involved in voluntary motor control, down to a key system of two interconnected cells. The cells were linked together in an inhibitory relationship, meaning a signal from one cell would suppress the second cell’s firing. The team ran simulations of the two-cell system while tinkering with the parameters of the model.

For example, since levels of the neurotransmitter dopamine decrease in Parkinson’s patients, increasing the inhibitory coupling strength between cells, the team tested how the strength of the inhibitory connection affected the cells’ synchronization.

In a paper in the AIP’s journal Chaos, the researchers identified specific ranges of coupling strength most likely to lead to bursts of intermittently synchronized firings.

The team also produced squiggly-lined graphs showing how the complex interactions between slow-changing variables such as calcium ion concentration can cause intermittent synchronization of the two cells. Although the model is based on a neural network known to be affected by Parkinson’s disease, the authors believe that their mathematical model might also yield insights into the operation of more generic neural systems.

Article: “Intermittent synchronization in a network of bursting neurons” is accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science.

Authors: Choongseok Park (1) and Leonid L. Rubchinsky (1,2).

(1) Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University-Purdue University, Indianapolis

(2) Stark Neurosciences Research Institute, Indiana University School of Medicine

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>