Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursting neurons follow the same beat, sometimes

13.09.2011
A simplified mathematical model of the brain’s neural circuitry shows that repetitious, overlapped firing of neurons can lead to the waves of overly synchronized brain activity that may cause the halting movements that are a hallmark of Parkinson’s disease.

The model provides a tool in the quest to gain a better understanding of the mechanisms behind this incurable degenerative disorder.

Researchers from IUPUI (Indiana University-Purdue University Indianapolis) reduced the complex biology of the basal ganglia, a part of the brain involved in voluntary motor control, down to a key system of two interconnected cells. The cells were linked together in an inhibitory relationship, meaning a signal from one cell would suppress the second cell’s firing. The team ran simulations of the two-cell system while tinkering with the parameters of the model.

For example, since levels of the neurotransmitter dopamine decrease in Parkinson’s patients, increasing the inhibitory coupling strength between cells, the team tested how the strength of the inhibitory connection affected the cells’ synchronization.

In a paper in the AIP’s journal Chaos, the researchers identified specific ranges of coupling strength most likely to lead to bursts of intermittently synchronized firings.

The team also produced squiggly-lined graphs showing how the complex interactions between slow-changing variables such as calcium ion concentration can cause intermittent synchronization of the two cells. Although the model is based on a neural network known to be affected by Parkinson’s disease, the authors believe that their mathematical model might also yield insights into the operation of more generic neural systems.

Article: “Intermittent synchronization in a network of bursting neurons” is accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science.

Authors: Choongseok Park (1) and Leonid L. Rubchinsky (1,2).

(1) Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University-Purdue University, Indianapolis

(2) Stark Neurosciences Research Institute, Indiana University School of Medicine

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>