Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting Bubbles Out Of Fuel Pumps

17.11.2010
Designing a Way to Prevent Cavitation Damage in Jet-Fuel Pumps

For more than 250 years, researchers have known that under certain conditions vapor bubbles can form in fluids moving swiftly over a surface. These bubbles soon collapse with such great force that they can poke holes in steel and damage objects such as ship propellers, turbine blades, nozzles and pump impellers.

Scientists have conducted extensive research for decades to try to understand this phenomenon -- called cavitation. But most experiments to date have been related to open-water objects like ship propellers.

Now a group led by Notre Dame professors Patrick Dunn and Flint Thomas has published the first detailed results of experiments aimed at preventing cavitation damage in jet fuel pumps, which are essential components in modern aircraft. Appearing in journal Physics of Fluids, which is published by the American Institute of Physics, the results showed great differences in cavitation behavior between water and JP-8 jet fuel, which is a complex mixture of more than 228 hydrocarbons and additives, each with its own fluid properties.

While it can be used to clean jewelry and disintegrate kidney stones, cavitation is usually considered to be highly detrimental and to be avoided. It was first described scientifically by Leonhard Euler in 1754, but the phenomenon made its initial impression with engineers in 1893 when it caused the failure of a propeller on the world’s fastest ship at the time, Great Britain’s HMS Daring. In modern times, degraded performance is the typical consequence, as maintenance crews usually discover and replace damaged components before they fail.

“Improved jet-fuel pumps are needed particularly for military aircraft being designed to fly at higher altitudes and in other demanding environments,” Dunn said. “But manufacturers still rely heavily upon trial-and-error in design. If they were confident that a computer-designed pump would work as predicted, new pumps could be lighter, more efficient and have longer lifetimes.”

The Notre Dame research provides jet-fuel pump designers with the first realistic data that they can use in their computer models to make better predictions of vulnerable locations in their pumps and systems where cavitation bubbles may be created and collapse.

It’s much more difficult to model cavitation in pumps than in open water, Dunn added, because the fluid typically has a turbulent journey with accelerated flows though small channels, orifices, and spinning discs. With so many constituents, jet fuel is also a computer modeler’s nightmare. Its properties can even change with storage conditions and is often contaminated with microparticles that can promote cavitation.

The article, "Experimental Characterization of Aviation-Fuel Cavitation" by Patrick F. Dunn, Flint O. Thomas, Michael P. Davis and Irina E. Dorofeeva appears in the journal Physics of Fluids. See: http://link.aip.org/link/phfle6/v22/i11/p117102/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

This research was funded by Honeywell Corp.

PHYSICS OF FLUIDS
Physics of Fluids is published by the American Institute of Physics with the cooperation of The American Physical Society Division of Fluid Dynamics. The journal is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. Content is published online daily and collected into monthly online and printed issues (12 issues per year). See: http://pof.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>