Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting Bubbles Out Of Fuel Pumps

17.11.2010
Designing a Way to Prevent Cavitation Damage in Jet-Fuel Pumps

For more than 250 years, researchers have known that under certain conditions vapor bubbles can form in fluids moving swiftly over a surface. These bubbles soon collapse with such great force that they can poke holes in steel and damage objects such as ship propellers, turbine blades, nozzles and pump impellers.

Scientists have conducted extensive research for decades to try to understand this phenomenon -- called cavitation. But most experiments to date have been related to open-water objects like ship propellers.

Now a group led by Notre Dame professors Patrick Dunn and Flint Thomas has published the first detailed results of experiments aimed at preventing cavitation damage in jet fuel pumps, which are essential components in modern aircraft. Appearing in journal Physics of Fluids, which is published by the American Institute of Physics, the results showed great differences in cavitation behavior between water and JP-8 jet fuel, which is a complex mixture of more than 228 hydrocarbons and additives, each with its own fluid properties.

While it can be used to clean jewelry and disintegrate kidney stones, cavitation is usually considered to be highly detrimental and to be avoided. It was first described scientifically by Leonhard Euler in 1754, but the phenomenon made its initial impression with engineers in 1893 when it caused the failure of a propeller on the world’s fastest ship at the time, Great Britain’s HMS Daring. In modern times, degraded performance is the typical consequence, as maintenance crews usually discover and replace damaged components before they fail.

“Improved jet-fuel pumps are needed particularly for military aircraft being designed to fly at higher altitudes and in other demanding environments,” Dunn said. “But manufacturers still rely heavily upon trial-and-error in design. If they were confident that a computer-designed pump would work as predicted, new pumps could be lighter, more efficient and have longer lifetimes.”

The Notre Dame research provides jet-fuel pump designers with the first realistic data that they can use in their computer models to make better predictions of vulnerable locations in their pumps and systems where cavitation bubbles may be created and collapse.

It’s much more difficult to model cavitation in pumps than in open water, Dunn added, because the fluid typically has a turbulent journey with accelerated flows though small channels, orifices, and spinning discs. With so many constituents, jet fuel is also a computer modeler’s nightmare. Its properties can even change with storage conditions and is often contaminated with microparticles that can promote cavitation.

The article, "Experimental Characterization of Aviation-Fuel Cavitation" by Patrick F. Dunn, Flint O. Thomas, Michael P. Davis and Irina E. Dorofeeva appears in the journal Physics of Fluids. See: http://link.aip.org/link/phfle6/v22/i11/p117102/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

This research was funded by Honeywell Corp.

PHYSICS OF FLUIDS
Physics of Fluids is published by the American Institute of Physics with the cooperation of The American Physical Society Division of Fluid Dynamics. The journal is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. Content is published online daily and collected into monthly online and printed issues (12 issues per year). See: http://pof.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>