Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BU researcher plays key role in discovery of new type of neutrino oscillation

Prof. Edward Kearns among designers of the T2K Experiment at Japan's J-PARC facility

The international T2K collaboration announced today that they have observed an indication of a new type of neutrino transformation or oscillation from a muon neutrino to an electron neutrino. Boston University Professor of Physics Edward Kearns is among the team of researchers responsible for this discovery.

Evidence of this new type of neutrino oscillation may lead the way to new studies of a matter/ anti-matter asymmetry called charge-parity (CP) violation. This phenomenon has been observed in quarks (for which Nobel prizes were awarded in 1980 and 2008), but never in neutrinos. CP violation in the early universe may be the reason that the observable universe today is dominated by matter and no significant anti-matter. If the T2K result does indicate this third oscillation, then a search for CP violation in neutrinos will be a major scientific quest in the coming years.

"Even though we have studied neutrino oscillations for years, there is still a great thrill in seeing these six events. The neutrino beam technique that we use is working beautifully and the interpretation is simple and direct. I can hardly wait to collect more data. It has been a privilege for all of us at Boston University to participate in this series of experiments in Japan, and we greatly appreciate the efforts at J-PARC and KEK to restart the T2K beam," says Kearns.

Neutrinos come in three types, or "flavors"; electron, muon, and tau. In the T2K experiment in Japan, a muon neutrino beam was produced in the Japan Proton Accelerator Research Complex, called J-PARC, located in Tokai village, Ibaraki prefecture, on the east coast of Japan, and was aimed at the gigantic Super-Kamiokande underground detector in Kamioka, near the west coast of Japan, 295 km (185 miles) away from Tokai. An analysis of the detected neutrino-induced events in the Super-Kamiokande detector indicates that a very small number of muon neutrinos traveling from Tokai to Kamioka (T2K) transformed themselves into electron neutrinos.

Further steps towards this goal will continue to require global scientific collaborations, like T2K, to overcome the significant technical challenges in this search. The T2K experiment utilizes the J-PARC complex that accelerates protons onto a target to produce an intense secondary particle beam that is focused by special magnets called neutrino horns. The focused particle beam decays into a beam of neutrinos, which is monitored by a neutrino detector 280 meters from the target. This beam of neutrinos travels 295 km underground to be detected in the Super-Kamiokande detector.

The work of the T2K experiment is located in Japan and primarily supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology. However, the experiment was constructed and is operated by an international collaboration, which consists of about 500 physicists from 59 institutions in 12 countries [Japan, US, UK, Italy, Canada, Korea, Switzerland, Spain, Germany, France, Poland, and Russia]. The data collected by the experiment is also analyzed by the collaboration. The US T2K collaborating team of approximately 70 members [Boston University, Brookhaven National Lab, UC Irvine, University of Colorado, Colorado State University, Duke University, Louisiana State University, Stony Brook University, University of Pittsburgh, University of Rochester, and University of Washington (Seattle)] is funded by the US Department of Energy, Office of Science. The US groups have built superconducting corrector magnets, proton beam monitor electronics, the second neutrino horn and a GPS time synchronization system for the T2K neutrino beamline; and a pi-zero detector and a side muon range detector (partial detector) in the T2K near detector complex.

They are also part of the team that built, upgraded and operates the Super-Kamiokande detector.

The March 2011 earthquake in eastern Japan caused damage to the accelerator complex at JPARC, and the data-taking run of the T2K experiment was abruptly discontinued. Fortunately, however, no scientists working on T2K or technical staff supporting their work were injured in the earthquake or its aftermath. The T2K experiment will be ready to take data when J-PARC resumes its operation, which is planned to occur at the end of 2011.

More details on this measurement have been provided in a press report at and attached to this document.

Media Contact:

Prof. Edward Kearns, Boston University (Boston, MA),, Phone: 617-353-3425

For more details, visit

About the Boston University Department of Physics — The mission of the Physics Department at Boston University is to provide excellence in teaching physics and advancement of knowledge through research and scholarship. The Department's strengths are in experimental and theoretical condensed matter physics, elementary particle physics and biological physics. In elementary particle experiment, BU physicists host major experimental efforts with the DØ experiment at Fermilab; the Super-K neutrino experiment in Kamioka, Japan; two major detector efforts at the LHC at CERN and the MuLan experiment at the Paul Scherrer Institute, both in Switzerland. The BU Department of Physics ranks in the top 10 in private universities in statistical measures of the number of refereed papers, the number of citations per year, and the number of citations per paper.

About Boston University — Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU contains 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

Edward Kearns | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>