Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Physicist Discovers Odd, Fluctuating Magnetic Waves

24.02.2010
Brown University physicist Vesna Mitrovic and colleagues at Brown and in France have discovered magnetic waves that fluctuate when exposed to certain conditions in a superconducting material. The discovery may help scientists understand more fully the relationship between magnetism and superconductivity at the quantum level. Results are published in Physical Review Letters.

At the quantum level, the forces of magnetism and superconductivity exist in an uneasy relationship. Superconducting materials repel a magnetic field, so to create a superconducting current, the magnetic forces must be strong enough to overcome the natural repulsion and penetrate the body of the superconductor. But there's a limit: Apply too much magnetic force, and the superconductor’s capability is destroyed.

This relationship is pretty well known. But why it is so remains mysterious. Now physicists at Brown University have documented for the first time a quantum-level phenomenon that occurs to electrons subjected to magnetism in a superconducting material. In a paper published in Physical Review Letters, Vesna Mitrovic, joined by other researchers at Brown and in France, report that at under certain conditions, electrons in a superconducting material form odd, fluctuating magnetic waves. Apply a little more magnetic force, and those fluctuations cease: The electronic magnets form repeated wave-like patterns promoted by superconductivity.

The discovery may help scientists understand more fully the relationship between magnetism and superconductivity at the quantum level. The insight also may help advance research into superconducting magnets, which are used in magnetic resonance imaging (MRI) and a host of other applications. “If you don’t understand [what is happening at] the quantum [level], how can you design a more powerful magnet?” asked Mitrovic, assistant professor of physics.

When a magnetic field is applied to a superconducting material, vortices measured in nanometers (1 billionth of a meter) pop up. These vortices, like super-miniature tornadoes, are areas where the magnetic field has overpowered the superconducting field state, essentially suppressing it. Crank up the magnetic field and more vortices appear. At some point, the vortices are so widespread the material loses its superconducting ability altogether.

At an even more basic level, sets of electrons called Cooper pairs (named for Brown physicist Leon Cooper, who shared a Nobel Prize for the discovery) form superconductivity. But scientists believe there also are other electrons that are magnetically oriented and spin on their own axes like little globes; these electrons are tilted at various angles on their imaginary axes and move in a repeating, linear pattern that resembles waves, Mitrovic and her colleagues have observed.

“These funny waves most likely appear because of superconductivity, but the reason why is still unsettled,” Mitrovic said.

Adding to the mystery, Mitrovic and fellow researchers, including Brown graduate student Georgios Koutroulakis and former Brown postdoctoral associate Michael Stewart, saw that the waves fluctuated under certain conditions. After nearly three years of experiments at Brown and at the national magnetic field laboratory in Grenoble, France, Mitrovic’s team was able to produce the odd waves consistently when testing a superconducting material — cerium-cobalt-indium5 (CeCoIn5) — at temperatures close to absolute zero and at about 10 Tesla of magnetic force.

The waves appeared to be sliding, Mitrovic said. “It’s as if people are yanking on the wave,” she added. Mitrovic and her colleagues also observed that when more magnetic energy is added, the fluctuations disappear and the waves resume their repeating, linear patterns.

The researchers next want to understand why these fluctuations occur and whether they crop up in other superconducting material.

The research was funded by the National Science Foundation and a European Community grant, as well as the Alfred P. Sloan Foundation.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>