Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Physicist Discovers Odd, Fluctuating Magnetic Waves

24.02.2010
Brown University physicist Vesna Mitrovic and colleagues at Brown and in France have discovered magnetic waves that fluctuate when exposed to certain conditions in a superconducting material. The discovery may help scientists understand more fully the relationship between magnetism and superconductivity at the quantum level. Results are published in Physical Review Letters.

At the quantum level, the forces of magnetism and superconductivity exist in an uneasy relationship. Superconducting materials repel a magnetic field, so to create a superconducting current, the magnetic forces must be strong enough to overcome the natural repulsion and penetrate the body of the superconductor. But there's a limit: Apply too much magnetic force, and the superconductor’s capability is destroyed.

This relationship is pretty well known. But why it is so remains mysterious. Now physicists at Brown University have documented for the first time a quantum-level phenomenon that occurs to electrons subjected to magnetism in a superconducting material. In a paper published in Physical Review Letters, Vesna Mitrovic, joined by other researchers at Brown and in France, report that at under certain conditions, electrons in a superconducting material form odd, fluctuating magnetic waves. Apply a little more magnetic force, and those fluctuations cease: The electronic magnets form repeated wave-like patterns promoted by superconductivity.

The discovery may help scientists understand more fully the relationship between magnetism and superconductivity at the quantum level. The insight also may help advance research into superconducting magnets, which are used in magnetic resonance imaging (MRI) and a host of other applications. “If you don’t understand [what is happening at] the quantum [level], how can you design a more powerful magnet?” asked Mitrovic, assistant professor of physics.

When a magnetic field is applied to a superconducting material, vortices measured in nanometers (1 billionth of a meter) pop up. These vortices, like super-miniature tornadoes, are areas where the magnetic field has overpowered the superconducting field state, essentially suppressing it. Crank up the magnetic field and more vortices appear. At some point, the vortices are so widespread the material loses its superconducting ability altogether.

At an even more basic level, sets of electrons called Cooper pairs (named for Brown physicist Leon Cooper, who shared a Nobel Prize for the discovery) form superconductivity. But scientists believe there also are other electrons that are magnetically oriented and spin on their own axes like little globes; these electrons are tilted at various angles on their imaginary axes and move in a repeating, linear pattern that resembles waves, Mitrovic and her colleagues have observed.

“These funny waves most likely appear because of superconductivity, but the reason why is still unsettled,” Mitrovic said.

Adding to the mystery, Mitrovic and fellow researchers, including Brown graduate student Georgios Koutroulakis and former Brown postdoctoral associate Michael Stewart, saw that the waves fluctuated under certain conditions. After nearly three years of experiments at Brown and at the national magnetic field laboratory in Grenoble, France, Mitrovic’s team was able to produce the odd waves consistently when testing a superconducting material — cerium-cobalt-indium5 (CeCoIn5) — at temperatures close to absolute zero and at about 10 Tesla of magnetic force.

The waves appeared to be sliding, Mitrovic said. “It’s as if people are yanking on the wave,” she added. Mitrovic and her colleagues also observed that when more magnetic energy is added, the fluctuations disappear and the waves resume their repeating, linear patterns.

The researchers next want to understand why these fluctuations occur and whether they crop up in other superconducting material.

The research was funded by the National Science Foundation and a European Community grant, as well as the Alfred P. Sloan Foundation.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>