Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Dwarf Found Orbiting a Young Sun-Like Star

30.07.2010
The discovery is expected to shed light on the early stages of solar system formation.

Astronomers have directly imaged a very young brown dwarf (or failed star) in a tight orbit around a young nearby Sun-like star. An international team led by University of Hawaii astronomers Beth Biller and Michael Liu with help from University of Arizona astronomer Laird Close with UA graduate students Eric Nielsen, Jared Males and Andy Skemer made the rare find using the Near-Infrared Coronagraphic Imager (NICI) on the international 8 meter Gemini-South Telescope in Chile.

What makes this discovery special is the proximity between the 36 Jupiter-mass brown dwarf companion (dubbed "PZ Tel B") and its primary star named PZ Tel A. Both are separated by only 18 Astronomical Units (AU), similar to the distance between Uranus to our Sun. Most young brown dwarf and planetary companions found by direct imaging are at orbital separations greater than 50 AU -- larger than the orbit of Pluto (40 AU). In addition to its small current separation, in just the past year, the researchers observed PZ Tel B moving quickly outward from its parent star.

An older image, taken seven years ago and reanalyzed by Laird Close, a professor at UA’s Steward Observatory/department of astronomy, showed PZ Tel B was completely obscured by the glare from its parent star as recently as 2003, indicating its orbit is more elliptical than circular.

“Because PZ Tel A is a rare star being both close and very young, it had been imaged several times in the past” said Laird Close. “So we were quite surprised to see a new companion around what was thought to be a single star.”

Lead author and UA graduate Beth Biller said: "PZ Tel B travels on a particularly eccentric orbit -- in the last 10 years, we have literally watched it careen through its inner solar system. This can best be explained by a highly eccentric, or oval-shaped, orbit.”

The host star, PZ Tel A, is a younger version of the Sun, having a similar mass but a very young age of only 12 million years (about 400 times younger than our Sun). In fact, the PZ Tel system is young enough to still possess significant amounts of cold circumstellar dust, which may have been sculpted by the gravitational interaction with the young brown dwarf companion.

This makes the PZ Tel system an important laboratory for studying the early stages of solar system formation. With an estimated mass of 36 times that of Jupiter, PZ Tel B's orbital motion has significant implications for what type of planets can form (and whether planets can form at all) in the PZ Tel system.

Because PZ Tel B is so close to its parent star, special techniques are necessary to distinguish the faint light of the companion from the light of the primary star. PZ Tel B is separated by about 0.33 arcseconds from PZ Tel A, equivalent to a dime seen at a distance of 7 miles (11 km). In order to take pictures so close to the star, the team used an adaptive optics system coupled to a coronagraph in order to block out excess starlight, and then applied specialized analysis techniques to the images to detect PZ Tel B and measure its orbital motion.

PZ Tel B was discovered using Near-Infrared Coronagraphic Imager (NICI), the most powerful high-contrast instrument designed for imaging brown dwarfs and extrasolar planets around other stars. NICI can detect companions 1 million times fainter than the host star at just 1 arcsecond separations. An international team of researchers drawn from across the Gemini Telescope community is currently carrying out a 300-star survey with NICI, the largest high contrast imaging survey conducted to date.

NICI Campaign leader Michael Liu says: "We are just beginning to glean the many configurations of solar systems around stars like the Sun. The unique capabilities of NICI provide us with a powerful tool for studying their constituents using direct imaging.”

This research was supported by grants from the National Science Foundation and NASA. NICI is a facility instrument at the Gemini Telescope http://www.gemini.edu/sciops/?q=sciops ).

CONTACTS:

Laird Close, University of Arizona, Department of Astronomy, lclose@as.arizona.edu

Daniel Stolte, University of Arizona Office of Communications, (520) 626-4402; stolte@email.arizona.edu

LINKS:
Research paper in
Astrophysical Journal Letters: http://arxiv.org/abs/1007.4808

Daniel Stolte | University of Arizona
Further information:
http://www.gemini.edu/sciops/?q=sciops
http://www.arizona.edu
http://uanews.org/node/33014

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>