Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Dwarf Found Orbiting a Young Sun-Like Star

30.07.2010
The discovery is expected to shed light on the early stages of solar system formation.

Astronomers have directly imaged a very young brown dwarf (or failed star) in a tight orbit around a young nearby Sun-like star. An international team led by University of Hawaii astronomers Beth Biller and Michael Liu with help from University of Arizona astronomer Laird Close with UA graduate students Eric Nielsen, Jared Males and Andy Skemer made the rare find using the Near-Infrared Coronagraphic Imager (NICI) on the international 8 meter Gemini-South Telescope in Chile.

What makes this discovery special is the proximity between the 36 Jupiter-mass brown dwarf companion (dubbed "PZ Tel B") and its primary star named PZ Tel A. Both are separated by only 18 Astronomical Units (AU), similar to the distance between Uranus to our Sun. Most young brown dwarf and planetary companions found by direct imaging are at orbital separations greater than 50 AU -- larger than the orbit of Pluto (40 AU). In addition to its small current separation, in just the past year, the researchers observed PZ Tel B moving quickly outward from its parent star.

An older image, taken seven years ago and reanalyzed by Laird Close, a professor at UA’s Steward Observatory/department of astronomy, showed PZ Tel B was completely obscured by the glare from its parent star as recently as 2003, indicating its orbit is more elliptical than circular.

“Because PZ Tel A is a rare star being both close and very young, it had been imaged several times in the past” said Laird Close. “So we were quite surprised to see a new companion around what was thought to be a single star.”

Lead author and UA graduate Beth Biller said: "PZ Tel B travels on a particularly eccentric orbit -- in the last 10 years, we have literally watched it careen through its inner solar system. This can best be explained by a highly eccentric, or oval-shaped, orbit.”

The host star, PZ Tel A, is a younger version of the Sun, having a similar mass but a very young age of only 12 million years (about 400 times younger than our Sun). In fact, the PZ Tel system is young enough to still possess significant amounts of cold circumstellar dust, which may have been sculpted by the gravitational interaction with the young brown dwarf companion.

This makes the PZ Tel system an important laboratory for studying the early stages of solar system formation. With an estimated mass of 36 times that of Jupiter, PZ Tel B's orbital motion has significant implications for what type of planets can form (and whether planets can form at all) in the PZ Tel system.

Because PZ Tel B is so close to its parent star, special techniques are necessary to distinguish the faint light of the companion from the light of the primary star. PZ Tel B is separated by about 0.33 arcseconds from PZ Tel A, equivalent to a dime seen at a distance of 7 miles (11 km). In order to take pictures so close to the star, the team used an adaptive optics system coupled to a coronagraph in order to block out excess starlight, and then applied specialized analysis techniques to the images to detect PZ Tel B and measure its orbital motion.

PZ Tel B was discovered using Near-Infrared Coronagraphic Imager (NICI), the most powerful high-contrast instrument designed for imaging brown dwarfs and extrasolar planets around other stars. NICI can detect companions 1 million times fainter than the host star at just 1 arcsecond separations. An international team of researchers drawn from across the Gemini Telescope community is currently carrying out a 300-star survey with NICI, the largest high contrast imaging survey conducted to date.

NICI Campaign leader Michael Liu says: "We are just beginning to glean the many configurations of solar systems around stars like the Sun. The unique capabilities of NICI provide us with a powerful tool for studying their constituents using direct imaging.”

This research was supported by grants from the National Science Foundation and NASA. NICI is a facility instrument at the Gemini Telescope http://www.gemini.edu/sciops/?q=sciops ).

CONTACTS:

Laird Close, University of Arizona, Department of Astronomy, lclose@as.arizona.edu

Daniel Stolte, University of Arizona Office of Communications, (520) 626-4402; stolte@email.arizona.edu

LINKS:
Research paper in
Astrophysical Journal Letters: http://arxiv.org/abs/1007.4808

Daniel Stolte | University of Arizona
Further information:
http://www.gemini.edu/sciops/?q=sciops
http://www.arizona.edu
http://uanews.org/node/33014

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>