Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Dwarf Found Orbiting a Young Sun-Like Star

30.07.2010
The discovery is expected to shed light on the early stages of solar system formation.

Astronomers have directly imaged a very young brown dwarf (or failed star) in a tight orbit around a young nearby Sun-like star. An international team led by University of Hawaii astronomers Beth Biller and Michael Liu with help from University of Arizona astronomer Laird Close with UA graduate students Eric Nielsen, Jared Males and Andy Skemer made the rare find using the Near-Infrared Coronagraphic Imager (NICI) on the international 8 meter Gemini-South Telescope in Chile.

What makes this discovery special is the proximity between the 36 Jupiter-mass brown dwarf companion (dubbed "PZ Tel B") and its primary star named PZ Tel A. Both are separated by only 18 Astronomical Units (AU), similar to the distance between Uranus to our Sun. Most young brown dwarf and planetary companions found by direct imaging are at orbital separations greater than 50 AU -- larger than the orbit of Pluto (40 AU). In addition to its small current separation, in just the past year, the researchers observed PZ Tel B moving quickly outward from its parent star.

An older image, taken seven years ago and reanalyzed by Laird Close, a professor at UA’s Steward Observatory/department of astronomy, showed PZ Tel B was completely obscured by the glare from its parent star as recently as 2003, indicating its orbit is more elliptical than circular.

“Because PZ Tel A is a rare star being both close and very young, it had been imaged several times in the past” said Laird Close. “So we were quite surprised to see a new companion around what was thought to be a single star.”

Lead author and UA graduate Beth Biller said: "PZ Tel B travels on a particularly eccentric orbit -- in the last 10 years, we have literally watched it careen through its inner solar system. This can best be explained by a highly eccentric, or oval-shaped, orbit.”

The host star, PZ Tel A, is a younger version of the Sun, having a similar mass but a very young age of only 12 million years (about 400 times younger than our Sun). In fact, the PZ Tel system is young enough to still possess significant amounts of cold circumstellar dust, which may have been sculpted by the gravitational interaction with the young brown dwarf companion.

This makes the PZ Tel system an important laboratory for studying the early stages of solar system formation. With an estimated mass of 36 times that of Jupiter, PZ Tel B's orbital motion has significant implications for what type of planets can form (and whether planets can form at all) in the PZ Tel system.

Because PZ Tel B is so close to its parent star, special techniques are necessary to distinguish the faint light of the companion from the light of the primary star. PZ Tel B is separated by about 0.33 arcseconds from PZ Tel A, equivalent to a dime seen at a distance of 7 miles (11 km). In order to take pictures so close to the star, the team used an adaptive optics system coupled to a coronagraph in order to block out excess starlight, and then applied specialized analysis techniques to the images to detect PZ Tel B and measure its orbital motion.

PZ Tel B was discovered using Near-Infrared Coronagraphic Imager (NICI), the most powerful high-contrast instrument designed for imaging brown dwarfs and extrasolar planets around other stars. NICI can detect companions 1 million times fainter than the host star at just 1 arcsecond separations. An international team of researchers drawn from across the Gemini Telescope community is currently carrying out a 300-star survey with NICI, the largest high contrast imaging survey conducted to date.

NICI Campaign leader Michael Liu says: "We are just beginning to glean the many configurations of solar systems around stars like the Sun. The unique capabilities of NICI provide us with a powerful tool for studying their constituents using direct imaging.”

This research was supported by grants from the National Science Foundation and NASA. NICI is a facility instrument at the Gemini Telescope http://www.gemini.edu/sciops/?q=sciops ).

CONTACTS:

Laird Close, University of Arizona, Department of Astronomy, lclose@as.arizona.edu

Daniel Stolte, University of Arizona Office of Communications, (520) 626-4402; stolte@email.arizona.edu

LINKS:
Research paper in
Astrophysical Journal Letters: http://arxiv.org/abs/1007.4808

Daniel Stolte | University of Arizona
Further information:
http://www.gemini.edu/sciops/?q=sciops
http://www.arizona.edu
http://uanews.org/node/33014

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>