Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broadband light sources with liquid core

31.07.2017

Jena scientists generate supercontinuum light source using liquid core optical fibers and reveal a new type of soliton dynamics

The researchers pumped a hybrid waveguide with an ultrafast, intense laser pulse and produced a very broad light spectrum in the near and mid-infrared range (1.1 μm to 2.7 μm) not visible to the human eye. Due to the unique characteristics of the liquid fiber core, the light pulse is broken up into solitons -- a multitude of light waves with different wavelengths.


This is an illustration of a light pulse breaking up into solitons inside the optical fiber.

Source: IPHT Jena

The solitons form the extremely broadband laser light that is indispensable as a supercontinuum light source for applications in medical imaging, measurement technology, and spectroscopy. The team of research scientists from the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena, the Fraunhofer Institute of Applied Optics and Precision Mechanics, the Friedrich Schiller University of Jena, and the Helmholtz Institute Jena published the results of their work in the renowned journal Nature Communications.

Carbondisulfide shows non-linear optical effects and high transmission

The coupled, ultrafast light pulse breaks up into solitons only due to non-linear interactions with matter in the optical fiber. In case of liquid core fibers, this means that the optical density of the liquid inside the core changes significantly with the intensity of the incident light. However, not many materials show nonlinear optical effects and, at the same time, exhibit sufficient light transmission in the infrared spectral range.

Mario Chemnitz, scientist at Leibniz IPHT and first author of the publication, explains the unusual effect as follows: "The fiber core is filled with carbon disulfide, a liquid chemical compound with a very high refractive index. If we now couple polarized light into the core, the carbon disulfide molecules orient themselves along the electromagnetic field of the light. Due to this molecular orientation, the optical density -- and thus the light propagation in the fiber -- depends on the intensity of the laser light."

Optical memory effect

One unique feature of carbon disulfide is that the molecules orient themselves with a certain time delay. If the incident laser light pulse is much shorter than the time that the molecules require for orientation in the optical field, the research scientists can observe a special, delayed dynamic of the resulting solitons.

This was predicted back in 2010, but it was only now, the Jena scientists were able to provide experimental proof and an exact theoretical description of the processes. Mario Chemnitz describes this phenomenon as an optical "memory effect" of the liquid. This unique characteristic of the liquid fiber cores reduces fluctuations in the spectral bandwidth of the supercontinuum light source and makes liquid core fibers a more stable alternative to the known broadband light sources based on optical fibers made from special glasses.

###

The original article with the title "Hybrid soliton dynamics in liquid-core fibres" by Mario Chemnitz, Martin Gebhardt, Christian Gaida, Fabian Stutzki, Jens Kobelke, Jens Limpert, Andreas Tünnermann, and Markus A. Schmidt was published in Nature Communications.

Media Contact

Anja Schulz
anja.schulz@leibniz-ipht.de
0049-364-120-6033

 @Leibniz_IPHT

http://www.leibniz-ipht.de 

Anja Schulz | EurekAlert!

Further reports about: Broadband Photonic disulfide fiber fibers laser light light source light sources

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>