Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing Out the Best in X-ray Crystallography Data

06.11.2013
“Function follows form” might have been written to describe proteins, as the M. C. Escher-esque folds and twists of nature’s workhorse biomolecules enables each to carry out its specific responsibilities.

Technology’s workhorse for determining protein structures is X-ray protein crystallography, in which a beam of x-rays sent through a crystallized protein is scattered by the protein’s atoms, creating a diffraction pattern of dots that can be reconstructed by computer into a 3D model


X-ray crystallography of proteins yields structural images that resemble the artwork of M.C. Escher. A combination of the PHENIX and Rosetta programs can help refine these structural images, making the best of available data.

While synchrotron radiation facilities, such as Berkeley Lab’s Advanced Light Source, have been a boon to the field of protein crystallography, providing increasingly higher resolution structures over increasingly shorter time-spans, the technology is still a challenge. For some molecules, especially large molecular complexes, it is often only possible to obtain low-resolution experimental data, which means models are difficult to make and must be manually refined using computer modeling.

“Refinement of protein and other biomolecular structural models against low-resolution crystallographic data has been limited by the ability of current methods to converge on a structure with realistic geometry,” says Paul Adams, a bioengineer with Berkeley Lab’s Physical Biosciences Division and leading authority on x-ray crystallography, who, starting in 2000, has been leading the development of a highly successful software program called PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) that automates crystallography data analysis.

Now, Adams and a team that included Nathaniel Echols in his research group, and Frank DiMaio with the research group of David Baker at the University of Washington, have developed a new method for refining crystallographic data that combines aspects of PHENIX with aspects of Rosetta, the most widely used software for the prediction and design of the three-dimensional structure of proteins and other large biomolecules.

The Rosetta program, which was originally developed by Baker and his research group, utilizes a detailed all-atom force field plus a diverse set of search procedures for the creation of its 3D models. PHENIX assembles 3D models atom-by-atom through the extraction of the best data from X-ray measurements. One of the most important components of PHENIX is “phenix.refine,” a program for improving these models against the X-ray data using maximum likelihood methods. It was this feature that was combined with Rosetta.

“Our new method integrates the Rosetta and PHENIX programs directly in a flexible framework that allows it to be adapted to a wide variety of different scenarios,” says Echols. “The main advantage of our method is that it can aggressively optimize models to fit the data and also present realistic geometry. In general, it has been difficult to come up with methods that handle both of these demands. As a result, crystallographers have either spent a lot of time fixing errors, or the published structures end up being of poor quality.”

Echols is one of two lead authors, along with DiMaio, of a paper in Nature Methods describing this work. The paper is titled “Improved low-resolution crystallographic refinement with Phenix and Rosetta.” In addition to Adams and Baker, other co-authors are Jeffrey Headd and Thomas Terwilliger. Adams and Baker are the corresponding authors.

Funding for this research was provided by the National Institutes of Health and the U.S. Department of Energy’s Office of Science.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

Further reports about: Crystallography PHENIX X-ray microscopy ion crystal protein structure

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>