Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brilliant light source for X-ray microscopy permits three-dimensional imaging of biological cells

12.12.2008
The Fraunhofer Institute for Laser Technology ILT in Aachen has developed a powerful light source for compact X-ray microscopes that will allow biological cells to be studied in high resolution. Using a technique similar to that of medical tomography, it is now possible to obtain layered three-dimensional images of biological cells or even semiconductor devices.

The task of analyzing the internal structure of biological cells is a relatively complex affair. When using an electron microscope, the whole cells first have to be fixed, followed by the time-consuming task of preparing the individual slices. The surface of the slices can then be analyzed at high resolution, one slice at a time.


Image of a diatom (silica algae) taken using the X-ray microscope developed by the Fraunhofer Institute for Laser Technology ILT, Aachen, Germany

The procedure is much less laborious when using an X-ray microscope. Immediately after cryo-fixing of the whole cells, it is possible to obtain 3-dimensional images with a resolution of 20 nanometers (at current standards). The technique is rather similar to that of medical tomography (CAT scanning). X-ray microscopes can also be used in semiconductor electronics to examine current-carrying circuits at high resolution. This allows defects to be detected and visualized in working electronic devices.

To achieve the comparatively high resolution of 20 nanometers that distinguishes X-ray microscopy from basic light microscopy, a short-wavelength source in the soft X-ray range is required. Furthermore, the appropriate short exposure times call for the presence of a high photon flux. To date, the usual way of generating the necessary photon flow has involved the use of an electron storage ring. Such facilities are only available in a limited number of major research centers, and can only be used on-site, which makes it difficult for many users to take advantage of them.

The Fraunhofer Institute for Laser Technology has now developed a compact, integrated light source/collector lens system that enables powerful X-ray microscopes to be built on a laboratory scale. The volume of the resulting X-ray microscope does not exceed 2 m3. This permits it to be installed wherever it is needed.

The new X-ray microscope is capable of operating with exposure times in the single-digit second range for thin samples of less than 1 micrometer, or several tens of seconds for larger biological samples with a thickness of a few micrometers. Dr. Klaus Bergmann, who leads the Fraunhofer ILT project team, is certain that, "we will be able to bring the exposure time down to below 10 seconds for the larger samples too, by optimizing the design of the condenser mirror."

A hollow-cathode-triggered pinch plasma is employed as the light source. The nitrogen working gas is repeatedly ionized in a pulsed high-current discharge, and briefly heated to a temperature of several hundred thousand degrees Celsius. Part of the coupled energy is emitted in the form of characteristic X-rays at a wavelength of 2.88 nanometers. The source can produce 4 x 10exp13 photons/(sr x pulse) at the 1s2-1s2p transitions of helium-like nitrogen. Using a suitably adapted collector optic and a pulse repetition rate of 1000 Hz, a photon flux of 1 x 10exp7 photons/(µmexp2 x s) can be generated on the sample. At this density, microscopic images of thick aqueous samples can be obtained with an exposure time of approximately ten seconds.

A first demonstrator model of the microscope has been built in collaboration with the Institute for X-Ray-Optics at the University of Applied Sciences in Koblenz and the company ACCEL Instruments GmbH in Bergisch-Gladbach, as part of a BMBF-funded collaborative research project. Next year's objective is to produce a light source for a commercial X-ray microscope suitable for tomography applications by integrating an appropriately adapted collector optic and further improving the brilliance.

CONTACTS at the Fraunhofer ILT:

If you have any questions about the X-ray microscope, please contact our experts:
Dr. rer. nat. Klaus Bergmann
Plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-302
Fax +49 (0)241/8906-121
klaus.bergmann@ilt.fraunhofer.de
Dr. Willi Neff
Head of the plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-142
Fax +49 (0)241/8906-121
willi.neff@ilt.fraunhofer.de
If you have questions concerning other subjects and wish to be put in touch with the relevant expert, please contact:
Dipl.-Phys. Axel Bauer
Head of Marketing and Communications
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-194
Fax +49 (0)241/8906-121
axel.bauer@ilt.fraunhofer.de

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>