Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brilliant light source for X-ray microscopy permits three-dimensional imaging of biological cells

The Fraunhofer Institute for Laser Technology ILT in Aachen has developed a powerful light source for compact X-ray microscopes that will allow biological cells to be studied in high resolution. Using a technique similar to that of medical tomography, it is now possible to obtain layered three-dimensional images of biological cells or even semiconductor devices.

The task of analyzing the internal structure of biological cells is a relatively complex affair. When using an electron microscope, the whole cells first have to be fixed, followed by the time-consuming task of preparing the individual slices. The surface of the slices can then be analyzed at high resolution, one slice at a time.

Image of a diatom (silica algae) taken using the X-ray microscope developed by the Fraunhofer Institute for Laser Technology ILT, Aachen, Germany

The procedure is much less laborious when using an X-ray microscope. Immediately after cryo-fixing of the whole cells, it is possible to obtain 3-dimensional images with a resolution of 20 nanometers (at current standards). The technique is rather similar to that of medical tomography (CAT scanning). X-ray microscopes can also be used in semiconductor electronics to examine current-carrying circuits at high resolution. This allows defects to be detected and visualized in working electronic devices.

To achieve the comparatively high resolution of 20 nanometers that distinguishes X-ray microscopy from basic light microscopy, a short-wavelength source in the soft X-ray range is required. Furthermore, the appropriate short exposure times call for the presence of a high photon flux. To date, the usual way of generating the necessary photon flow has involved the use of an electron storage ring. Such facilities are only available in a limited number of major research centers, and can only be used on-site, which makes it difficult for many users to take advantage of them.

The Fraunhofer Institute for Laser Technology has now developed a compact, integrated light source/collector lens system that enables powerful X-ray microscopes to be built on a laboratory scale. The volume of the resulting X-ray microscope does not exceed 2 m3. This permits it to be installed wherever it is needed.

The new X-ray microscope is capable of operating with exposure times in the single-digit second range for thin samples of less than 1 micrometer, or several tens of seconds for larger biological samples with a thickness of a few micrometers. Dr. Klaus Bergmann, who leads the Fraunhofer ILT project team, is certain that, "we will be able to bring the exposure time down to below 10 seconds for the larger samples too, by optimizing the design of the condenser mirror."

A hollow-cathode-triggered pinch plasma is employed as the light source. The nitrogen working gas is repeatedly ionized in a pulsed high-current discharge, and briefly heated to a temperature of several hundred thousand degrees Celsius. Part of the coupled energy is emitted in the form of characteristic X-rays at a wavelength of 2.88 nanometers. The source can produce 4 x 10exp13 photons/(sr x pulse) at the 1s2-1s2p transitions of helium-like nitrogen. Using a suitably adapted collector optic and a pulse repetition rate of 1000 Hz, a photon flux of 1 x 10exp7 photons/(µmexp2 x s) can be generated on the sample. At this density, microscopic images of thick aqueous samples can be obtained with an exposure time of approximately ten seconds.

A first demonstrator model of the microscope has been built in collaboration with the Institute for X-Ray-Optics at the University of Applied Sciences in Koblenz and the company ACCEL Instruments GmbH in Bergisch-Gladbach, as part of a BMBF-funded collaborative research project. Next year's objective is to produce a light source for a commercial X-ray microscope suitable for tomography applications by integrating an appropriately adapted collector optic and further improving the brilliance.

CONTACTS at the Fraunhofer ILT:

If you have any questions about the X-ray microscope, please contact our experts:
Dr. rer. nat. Klaus Bergmann
Plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-302
Fax +49 (0)241/8906-121
Dr. Willi Neff
Head of the plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-142
Fax +49 (0)241/8906-121
If you have questions concerning other subjects and wish to be put in touch with the relevant expert, please contact:
Dipl.-Phys. Axel Bauer
Head of Marketing and Communications
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-194
Fax +49 (0)241/8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>