Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brilliant light source for X-ray microscopy permits three-dimensional imaging of biological cells

12.12.2008
The Fraunhofer Institute for Laser Technology ILT in Aachen has developed a powerful light source for compact X-ray microscopes that will allow biological cells to be studied in high resolution. Using a technique similar to that of medical tomography, it is now possible to obtain layered three-dimensional images of biological cells or even semiconductor devices.

The task of analyzing the internal structure of biological cells is a relatively complex affair. When using an electron microscope, the whole cells first have to be fixed, followed by the time-consuming task of preparing the individual slices. The surface of the slices can then be analyzed at high resolution, one slice at a time.


Image of a diatom (silica algae) taken using the X-ray microscope developed by the Fraunhofer Institute for Laser Technology ILT, Aachen, Germany

The procedure is much less laborious when using an X-ray microscope. Immediately after cryo-fixing of the whole cells, it is possible to obtain 3-dimensional images with a resolution of 20 nanometers (at current standards). The technique is rather similar to that of medical tomography (CAT scanning). X-ray microscopes can also be used in semiconductor electronics to examine current-carrying circuits at high resolution. This allows defects to be detected and visualized in working electronic devices.

To achieve the comparatively high resolution of 20 nanometers that distinguishes X-ray microscopy from basic light microscopy, a short-wavelength source in the soft X-ray range is required. Furthermore, the appropriate short exposure times call for the presence of a high photon flux. To date, the usual way of generating the necessary photon flow has involved the use of an electron storage ring. Such facilities are only available in a limited number of major research centers, and can only be used on-site, which makes it difficult for many users to take advantage of them.

The Fraunhofer Institute for Laser Technology has now developed a compact, integrated light source/collector lens system that enables powerful X-ray microscopes to be built on a laboratory scale. The volume of the resulting X-ray microscope does not exceed 2 m3. This permits it to be installed wherever it is needed.

The new X-ray microscope is capable of operating with exposure times in the single-digit second range for thin samples of less than 1 micrometer, or several tens of seconds for larger biological samples with a thickness of a few micrometers. Dr. Klaus Bergmann, who leads the Fraunhofer ILT project team, is certain that, "we will be able to bring the exposure time down to below 10 seconds for the larger samples too, by optimizing the design of the condenser mirror."

A hollow-cathode-triggered pinch plasma is employed as the light source. The nitrogen working gas is repeatedly ionized in a pulsed high-current discharge, and briefly heated to a temperature of several hundred thousand degrees Celsius. Part of the coupled energy is emitted in the form of characteristic X-rays at a wavelength of 2.88 nanometers. The source can produce 4 x 10exp13 photons/(sr x pulse) at the 1s2-1s2p transitions of helium-like nitrogen. Using a suitably adapted collector optic and a pulse repetition rate of 1000 Hz, a photon flux of 1 x 10exp7 photons/(µmexp2 x s) can be generated on the sample. At this density, microscopic images of thick aqueous samples can be obtained with an exposure time of approximately ten seconds.

A first demonstrator model of the microscope has been built in collaboration with the Institute for X-Ray-Optics at the University of Applied Sciences in Koblenz and the company ACCEL Instruments GmbH in Bergisch-Gladbach, as part of a BMBF-funded collaborative research project. Next year's objective is to produce a light source for a commercial X-ray microscope suitable for tomography applications by integrating an appropriately adapted collector optic and further improving the brilliance.

CONTACTS at the Fraunhofer ILT:

If you have any questions about the X-ray microscope, please contact our experts:
Dr. rer. nat. Klaus Bergmann
Plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-302
Fax +49 (0)241/8906-121
klaus.bergmann@ilt.fraunhofer.de
Dr. Willi Neff
Head of the plasma technology department
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-142
Fax +49 (0)241/8906-121
willi.neff@ilt.fraunhofer.de
If you have questions concerning other subjects and wish to be put in touch with the relevant expert, please contact:
Dipl.-Phys. Axel Bauer
Head of Marketing and Communications
Fraunhofer Institute for Laser Technology ILT
Phone +49 (0)241/8906-194
Fax +49 (0)241/8906-121
axel.bauer@ilt.fraunhofer.de

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>