Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brightness-equalized quantum dots improve biological imaging

05.10.2015

Researchers at the University of Illinois at Urbana-Champaign have introduced a new class of light-emitting quantum dots (QDs) with tunable and equalized fluorescence brightness across a broad range of colors. This results in more accurate measurements of molecules in diseased tissue and improved quantitative imaging capabilities.

"In this work, we have made two major advances--the ability to precisely control the brightness of light-emitting particles called quantum dots, and the ability to make multiple colors equal in brightness," explained Andrew M. Smith, an assistant professor of bioengineering at Illinois.


Left: Conventional fluorescent materials like quantum dots and dyes have mismatched brightness between different colors. When these materials are administered to a tumor (shown below) to measure molecular concentrations, the signals are dominated by the brighter fluorophores. Right: New brightness-equalized quantum dots that have equal fluorescence brightness for different colors. When these are administered to tumors, the signals are evenly matched, allowing measurement of many molecules at the same time.

Credit: University of Illinois

"Previously light emission had an unknown correspondence with molecule number. Now it can be precisely tuned and calibrated to accurately count specific molecules. This will be particularly useful for understanding complex processes in neurons and cancer cells to help us unravel disease mechanisms, and for characterizing cells from diseased tissue of patients."

"Fluorescent dyes have been used to label molecules in cells and tissues for nearly a century, and have molded our understanding of cellular structures and protein function. But it has always been challenging to extract quantitative information because the amount of light emitted from a single dye is unstable and often unpredictable.

Also the brightness varies drastically between different colors, which complicates the use of multiple dye colors at the same time. These attributes obscure correlations between measured light intensity and concentrations of molecules," stated Sung Jun Lim, a postdoctoral fellow and first author of the paper, "Brightness-Equalized Quantum Dots," published this week in Nature Communications.

According to the researchers, these new materials will be especially important for imaging in complex tissues and living organisms where there is a major need for quantitative imaging tools, and can provide a consistent and tunable number of photons per tagged biomolecule.

They are also expected to be used for precise color matching in light-emitting devices and displays, and for photon-on-demand encryption applications. The same principles should be applicable across a wide range of semiconducting materials.

"The capacity to independently tune the QD fluorescence brightness and color has never before been possible, and these BE-QDs now provide this capability," said Lim. "We have developed new materials-engineering principles that we anticipate will provide a diverse range of new optical capabilities, allow quantitative multicolor imaging in biological tissue, and improve color tuning in light-emitting devices.

In addition, BE-QDs maintain their equal brightness over time while whereas conventional QDs with mismatched brightness become further mismatched over time. These attributes should lead to new LEDs and display devices not only with precisely matched colors--better color accuracy and brightness--but also with improved performance lifetime and improved ease of manufacturing." QDs are already in use in display devices (e.g. Amazon Kindle and a new Samsung TV).

###

In addition to Lim and Smith, co-authors include Mohammad U. Zahid, Phuong Le, Liang Ma, Bioengineering at Illinois; David Entenberg, Allison S. Harney, and John Condeelis, Albert Einstein College of Medicine, New York.

Media Contact

Andrew M. Smith
smi@illinois.edu
217-300-5638

 @EngineeringAtIL

http://engineering.illinois.edu/ 

Andrew M. Smith | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>