Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brightening the future for optical circuits

13.10.2008
By working together to share costs and know-how, European researchers are shaking up the way research and development is carried out on optical chips.

Optics has come a long way since the 1960s. Today, it is more than just light research. The field of photonics now deals with the science and technology of light, its fundamental properties, how it interacts with other matter, and the technological applications of this.

Photonics technology is playing an increasingly important role in our everyday technology, including displays and cameras, the fibre optics of the internet, optical recording devices such as DVDs, and power-producing solar cells.

"With the invention of the laser and the optical fibre, as well as the development of a host of many different new optical materials, such as semiconductors and liquid crystals, an exponential growth of knowledge and technology has been created," says Roel Baets, coordinator of the ePIXnet network.

"Photonics may well become for the 21st century what electronics has been to the 20th," he posits.

Key to the advances in electronics was the microchip, and this is the direction that photonics is taking. Photonic chips use light to communicate and process information, and are manufactured in much the same way as their electronic counterparts.

Some digital cameras and DVD players already contain photonic chips, albeit very simple versions. "In the future, it is expected that photonic chips will become complex and smart," says Baets who is a professor in the Department of Information Technology (INTEC) at Ghent University, as well as being associated with the microelectronics research centre IMEC.

But as the technology advances, so do the costs to research this field. Long gone are the days when one group could afford all the fancy tools for independent in-house research.

The EU-funded ePIXnet was set up in 2004 to establish an open-access Network of Excellence making it possible for researchers across Europe to access advanced technologies in other institutes.

"Not only does this call for a well-documented, transparent and affordable access model to somebody else's infrastructure, it also calls for trust building," says Baets. "This is what ePIXnet is about."

By sharing technologies, the costs become more affordable. This is complemented by more joint research and collaboration, and a higher research output.

Visible results

To facilitate the opening up of research institutes, ePIXnet has started to set up technology platforms. Seven platforms in all have been launched: four focusing on chip manufacture, and three on design and simulation, packaging, and testing.

"The basic idea is that these platforms will somehow become self-sustainable – in the sense that there is real demand by users who bring in sufficient financial resources to sustain the operation," says Baets. "Even if the network is not finished yet, it already looks as if at least some of these platforms will indeed become self-sustainable."

Among the four platforms looking at chip manufacture, the ePIXfab platform will be self-sustainable by autumn 2008. This platform is providing a cost-effective service for the fabrication of prototype photonic chips in silicon through the use of the same mainstream technologies being applied to electronic integrated circuits – CMOS circuits as they are called.

Again, photonics is following the trail blazed by micro-electronics and adopting the so-called ‘fabless’ approach whereby the photonics company focuses on the design, packaging and system integration, while the actual wafer fabrication takes place in third-party foundries offering generic technologies.

ePIXfab organises three "shuttle runs" per year, fabricating 10 to 20 designs in a cost-sharing way. The cost sharing can be as much as 80 to 90 percent, says Pieter Dumon, the full-time coordinator of ePIXfab, compared to the cost of a single processing run for the current technology.

"The cost sharing is the only means to make silicon photonics affordable for academic and industrial research groups and small and medium-sized enterprises," he says.

Self-sustainability is achievable because the full costs of prototyping are paid by the customers, enabling ePIXfab to operate at cost level.

"ePIXfab has a steady user base beyond ePIXnet, and beyond Europe, and we project that with the current customer demand ePIXnet can be self-sustainable," says Dumon.

Working along similar lines is the JePPIX platform where research groups share the costs for one production run of indium phosphide (InP) chips, in place of silicon.

Another platform is focusing on the nanoscale, giving groups without fabrication facilities access to nano-photonic devices, such as photonic crystals and photonic wires. An example of the success of this platform was presented by University of St Andrews researchers who developed an optical switch 36 times smaller than a conventional device.

Legacy beyond the platforms

In addition to these tangible results, Baets notes that ePIXnet has also stimulated a social network of like-minded researchers in Europe. It supported exchanges of junior researchers, and over 100 such exchanges took place between the partners, he said.

"In this way, the social interconnect distance between any two researchers in photonic ICs has gone down drastically in Europe," says Baets. "The long-term impact of this may well be immense."

The ePIXnet Network of Excellence received funding from the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90082

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>