Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bridging the terahertz gap

18.10.2017

Optical frequency comb offers a convenient way to generate elusive terahertz frequencies

Optical frequency combs are widely-used, high-precision tools for measuring and detecting different frequencies -- a.k.a. colors -- of light. Unlike conventional lasers, which emit a single frequency, these lasers emit multiple frequencies simultaneously. The equally spaced frequencies resemble the teeth of a comb. Optical frequency combs are used for everything from measuring the fingerprints of specific molecules to detecting distant exoplanets.


This is an image of optical frequency combs generated in quantum cascade lasers. The discovered harmonic comb regime produces a spectrum with an intermodal spacing that is 10 to 100 times larger than that observed in fundamental frequency combs (right) enabling completely new applications in this platform. Both types of frequency combs can be generated using the same type of device.

Credit. Image courtesy of Jared Sisler/Havard SEAS

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are exploring the possibility of using an infrared frequency comb to generate elusive terahertz frequencies. These frequencies -- which lie in the electromagnetic spectrum between radio waves and infrared light -- have long promised to transform communications and sensing but are very challenging to source. By harnessing a recently discovered laser state, SEAS researchers have discovered an infrared frequency comb in a quantum cascade laser that offers a new way to generate terahertz frequencies.

Dubbed a harmonic frequency comb, this new system produces a spectrum of teeth with spacing tens of times larger than traditional frequency combs. The large but precise spacing allows these modes of light to beat together to produce extremely pure terahertz tones.

The research is described in Nature Photonics.

"The discovery of the harmonic state of quantum cascade lasers is surprising from a laser physics point of view," said Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering and senior author of the paper. "Until recently, it was thought that multimode lasers would normally lase on all the possible frequencies of the cavity. In the harmonic state, many cavity frequencies are skipped. Even more remarkable is that this discovery opens up unforeseen opportunities in unused regions of the electromagnetic spectrum, the terahertz."

In traditional frequency combs, teeth are separated by a small frequency dictated by the characteristic length of the laser cavity -- meaning teeth sit close together. The harmonic frequency comb, however, can use a larger multiple of that frequency.

"With this new comb regime we can bypass the strict limitations set by the cavity length and reach an unprecedented degree of flexibility in the realm of quantum cascade laser frequency combs," said Marco Piccardo, a postdoctoral fellow in the Capasso lab and co-first author of the paper.

Key to the research was proving that these largely-spaced teeth were indeed equidistant. Using another reference comb, the team was able to study the harmonic frequency comb spectrum at very high resolution.

"We show that the lines are equidistant with an uncertainty of only 300 hertz, that quantifies the relative precision of this measurement to five parts per trillion," said Dmitry Kazakov, a visiting research intern in the Capasso group and co-first author of the paper. "It is as if one could measure the distance from Earth to the Moon and be off by less than the thickness of a human hair."

Most current terahertz generators use large, complex optical systems operating at near zero-temperatures to produce terahertz frequencies. The harmonic frequency comb operates at room temperature, uses commercial quantum cascade lasers, and is self-starting, meaning that the laser can automatically switch to this regime when electrical current is injected into the device.

"This opens up completely new applications for frequency combs, especially in wireless communications," Capasso said. "We foresee that in the near future this comb regime will enable a new class of chip-scale modem operating at terahertz frequencies, accommodating the ever-increasing consumer demand for high data rate digital communication."

###

This paper was co-authored by Yongrui Wang, Paul Chevalier, Tobias Mansuripur, Feng Xie, Kevin Lascola and Alexey Belyanin. It was supported in part by the DARPA SCOUT program and the National Science Foundation.

Media Contact

Leah Burrows
lburrows@seas.harvard.edu
617-496-1351

 @hseas

http://www.seas.harvard.edu/ 

Leah Burrows | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>