Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough Study Confirms Cause of Short Gamma-Ray Bursts

08.04.2011
A new supercomputer simulation shows the collision of two neutron stars can naturally produce the magnetic structures thought to power the high-speed particle jets associated with short gamma-ray bursts (GRBs). The study provides the most detailed glimpse of the forces driving some of the universe's most energetic explosions.

The state-of-the-art simulation ran for nearly seven weeks on the Damiana computer cluster at the Albert Einstein Institute (AEI) in Potsdam, Germany. It traces events that unfold over 35 milliseconds -- about three times faster than the blink of an eye.

GRBs are among the brightest events known, emitting as much energy in a few seconds as our entire galaxy does in a year. Most of this emission comes in the form of gamma rays, the highest-energy form of light.

"For the first time, we've managed to run the simulation well past the merger and the formation of the black hole," said Chryssa Kouveliotou, a co-author of the study at NASA's Marshall Space Flight Center in Huntsville, Ala. "This is by far the longest simulation of this process, and only on sufficiently long timescales does the magnetic field grow and reorganize itself from a chaotic structure into something resembling a jet."

GRBs longer than two seconds are the most common type and are widely thought to be triggered by the collapse of a massive star into a black hole. As matter falls toward the black hole, some of it forms jets in the opposite direction that move near the speed of light. These jets bore through the collapsing star along its rotational axis and produce a blast of gamma rays after they emerge. Understanding short GRBs, which fade quickly, proved more elusive. Astronomers had difficulty obtaining precise positions for follow-up studies.

That began to change in 2004, when NASA’s Swift satellite began rapidly locating bursts and alerting astronomers where to look.

"For more than two decades, the leading model of short GRBs was the merger of two neutron stars," said co-author Bruno Giacomazzo at the University of Maryland and NASA's Goddard Space Flight Center in Greenbelt, Md. "Only now can we show that the merger of neutron stars actually produces an ultrastrong magnetic field structured like the jets needed for a GRB."

A neutron star is the compressed core left behind when a star weighing less than about 30 times the sun's mass explodes as a supernova. Its matter reaches densities that cannot be reproduced on Earth -- a single spoonful outweighs the Himalayan Mountains.

The simulation began with a pair of magnetized neutron stars orbiting just 11 miles apart. Each star packed 1.5 times the mass of the sun into a sphere just 17 miles across and generated a magnetic field about a trillion times stronger than the sun's.

In 15 milliseconds, the two neutron stars crashed, merged and transformed into a rapidly spinning black hole weighing 2.9 suns. The edge of the black hole, known as its event horizon, spanned less than six miles. A swirling chaos of superdense matter with temperatures exceeding 18 billion degrees Fahrenheit surrounded the newborn black hole. The merger amplified the strength of the combined magnetic field, but it also scrambled it into disarray.

Over the next 11 milliseconds, gas swirling close to the speed of light continued to amplify the magnetic field, which ultimately became a thousand times stronger than the neutron stars' original fields. At the same time, the field became more organized and gradually formed a pair of outwardly directed funnels along the black hole's rotational axis.

This is exactly the configuration needed to power the jets of ultrafast particles that produce a short gamma-ray burst. Neither of the magnetic funnels was filled with high-speed matter when the simulation ended, but earlier studies have shown that jet formation can occur under these conditions.

"By solving Einstein's relativity equations as never before and letting nature take its course, we've lifted the veil on short GRBs and revealed what could be their central engine," said Luciano Rezzolla, the study's lead author at AEI. "This is a long-awaited result. Now it appears that neutron star mergers inevitably produce aligned jet-like structures in an ultrastrong magnetic field."

The study is available online and will appear in the May 1 edition of The Astrophysical Journal Letters.

The authors note the ultimate proof of the merger model will have to await the detection of gravitational waves -- ripples in the fabric of space-time predicted by relativity. Merging neutron stars are expected to be prominent sources, so the researchers also computed what the model's gravitational-wave signal would look like. Observatories around the world are searching for gravitational waves, so far without success because the signals are so faint.

Lynn Chandler
NASA's Goddard Space Flight Center, Greenbelt, Md.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov/topics/universe/features/gamma-ray-engines.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>