Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in astroparticle physics

03.12.2014

The astrophysicists Thomas Bretz and Daniela Dorner have developed a novel camera technology which for the first time allows sources of cosmic gamma radiation to be observed without interruption even when the moon is shining brightly. The scientists are now receiving an award in recognition of their work.

The Würzburg astrophysics department is thrilled: On 27 November, the Deutsche Physikalische Gesellschaft (DPG) announced that the 7,500 euro Gustav Hertz Award would be shared by scientist Daniela Dorner (35) and her colleague Thomas Bretz (40), who spent several years researching at the University of Würzburg. The awards will be presented in Berlin on March 2015.


This telescope (First G-APD Cherenkov telescope) in the European Northern Observatory on La Palma uses the new camera technology – even during a full moon.

(Photo: Daniela Dorner)

The DPG commends the laureates' "original and seminal impetus" to astroparticle physics with their contributions to enhancing Cherenkov telescopes. Bretz and Dorner achieved the success during their work for FACT (First Geiger-Mode Avalanche Photodiode Cherenkov Telescope), a joint project of Germany and Switzerland, which also involves scientists from TU Dortmund, ETH Zurich and the University of Geneva.

The challenge

So far, Cherenkov telescopes for observing cosmic gamma radiation have been based on detecting single photons by means of so-called photomultiplier tubes. Requiring high voltage in the kilovolt range, these photosensors are difficult to operate with outdoor telescopes. Moreover, they overload in the presence of bright moonlight and have to be switched off, which regularly results in data gaps.

But non-stop observation is crucial particularly in case of variable astronomical sources. Especially active galactic nuclei exhibit extreme variations in brightness which are crucial in order to understand physical processes taking place in the vicinity of black holes. Making progress in this field called for highly sensitive photosensors that require little electricity and no high-voltage supply while featuring nanosecond time resolution.

Putting an unusual idea into practice

To overcome this challenge, the scientists used an idea of the late physicist Eckhart Lorenz of the Max Planck Institute for Physics in Munich, namely to develop a camera with silicon-based semiconducting photosensors for a Cherenkov telescope. This idea seemed unsuitable at first and many experts advised against it.

But Thomas Bretz and Daniela Dorner nevertheless dared take the FACT collaboration one step further: They designed a camera, which was built at ETH Zurich, and installed it in a telescope on the Canary Island of La Palma in the Roque de los Muchachos Observatory, 2,200 metres above sea level.

The laureates' feat

The FACT camera is tolerant to bright moonlight. Bretz succeeded in optimising the camera until it clearly outperformed previous technology in terms of data quality. The camera produced a much greater data flow which Dorner "tamed" by using databases. The two researchers moreover designed a sophisticated feedback system which assures steady data consistency.

They prepared the software so as to enable the observatory to operate smoothly with the new telescope technology. After a brief instruction, even an ordinary person is capable of observing astronomical gamma sources with the telescope such as the Crab Nebula, a 1000-year-old supernova remnant in the constellation of Taurus, or the Markarian 421 blazar located in the constellation Ursa Major.

Although intended as a joke initially, the two laureates implemented another nifty feature: The observations made by the new system can be controlled from a smartphone interface. Bretz and Dorner have successfully encapsulated and automated the complex functionality of the FACT technology like in a Swiss pocket knife.

Where the new technology is used

The new technology will also be used in the MAGIC telescope system of the European Northern Observatory on La Palma. The team of Karl Mannheim, head of the astronomy department in Würzburg, is instrumental in operating MAGIC. "The new camera has become an established technology," the professor says. He believes that it will also be used in future large-scale machines such as the Cherenkov Telescope Array (CTA) which is set to take up operation in 2020.

And maybe, one day, FACT will also help realise the idea that had bothered the two laureates years ago already: to create a network of Cherenkov telescopes distributed all over the planet to close the data gaps resulting from Earth's rotation. When the sun is about to rise in La Palma, first the telescopes in America would take over followed by those in Asia until the sun goes down again on La Palma.

Vita of the laureates

Thomas Bretz, born in Frankfurt am Main in 1974, studied physics at TU Munich. In 2000, he joined Karl Mannheim's team at the university observatory in Göttingen. Two years later, the team relocated to the University of Würzburg where he met Daniela Dorner, who studied physics at the time. Inspired by Bretz, she joined projects dealing with the MAGIC telescope system. As a postdoc, he joined the École Polytechnique in Lausanne followed by ETH Zurich in 2012. In 2014, he became a junior professor at RWTH Aachen.

Born in 1979 Daniela Dorner from Amberg studied physics in Bayreuth and Würzburg. She completed her doctoral thesis in Würzburg in 2008. As a postdoc, she joined the ISDC Data Centre for Astrophysics in Geneva where she participated in a joint project of ETH Zurich and the University of Geneva. She returned to Würzburg in 2012 where she has been doing research in a joint project funded by the Federal Ministry of Education and Research (BMBF). Daniela Dorner likes to spend her free time with creative writing, doing collages and playing badminton.


Weitere Informationen:

http://www.astro.uni-wuerzburg.de/en  Visit homepage of the Astronomy Department

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>