Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in astroparticle physics

03.12.2014

The astrophysicists Thomas Bretz and Daniela Dorner have developed a novel camera technology which for the first time allows sources of cosmic gamma radiation to be observed without interruption even when the moon is shining brightly. The scientists are now receiving an award in recognition of their work.

The Würzburg astrophysics department is thrilled: On 27 November, the Deutsche Physikalische Gesellschaft (DPG) announced that the 7,500 euro Gustav Hertz Award would be shared by scientist Daniela Dorner (35) and her colleague Thomas Bretz (40), who spent several years researching at the University of Würzburg. The awards will be presented in Berlin on March 2015.


This telescope (First G-APD Cherenkov telescope) in the European Northern Observatory on La Palma uses the new camera technology – even during a full moon.

(Photo: Daniela Dorner)

The DPG commends the laureates' "original and seminal impetus" to astroparticle physics with their contributions to enhancing Cherenkov telescopes. Bretz and Dorner achieved the success during their work for FACT (First Geiger-Mode Avalanche Photodiode Cherenkov Telescope), a joint project of Germany and Switzerland, which also involves scientists from TU Dortmund, ETH Zurich and the University of Geneva.

The challenge

So far, Cherenkov telescopes for observing cosmic gamma radiation have been based on detecting single photons by means of so-called photomultiplier tubes. Requiring high voltage in the kilovolt range, these photosensors are difficult to operate with outdoor telescopes. Moreover, they overload in the presence of bright moonlight and have to be switched off, which regularly results in data gaps.

But non-stop observation is crucial particularly in case of variable astronomical sources. Especially active galactic nuclei exhibit extreme variations in brightness which are crucial in order to understand physical processes taking place in the vicinity of black holes. Making progress in this field called for highly sensitive photosensors that require little electricity and no high-voltage supply while featuring nanosecond time resolution.

Putting an unusual idea into practice

To overcome this challenge, the scientists used an idea of the late physicist Eckhart Lorenz of the Max Planck Institute for Physics in Munich, namely to develop a camera with silicon-based semiconducting photosensors for a Cherenkov telescope. This idea seemed unsuitable at first and many experts advised against it.

But Thomas Bretz and Daniela Dorner nevertheless dared take the FACT collaboration one step further: They designed a camera, which was built at ETH Zurich, and installed it in a telescope on the Canary Island of La Palma in the Roque de los Muchachos Observatory, 2,200 metres above sea level.

The laureates' feat

The FACT camera is tolerant to bright moonlight. Bretz succeeded in optimising the camera until it clearly outperformed previous technology in terms of data quality. The camera produced a much greater data flow which Dorner "tamed" by using databases. The two researchers moreover designed a sophisticated feedback system which assures steady data consistency.

They prepared the software so as to enable the observatory to operate smoothly with the new telescope technology. After a brief instruction, even an ordinary person is capable of observing astronomical gamma sources with the telescope such as the Crab Nebula, a 1000-year-old supernova remnant in the constellation of Taurus, or the Markarian 421 blazar located in the constellation Ursa Major.

Although intended as a joke initially, the two laureates implemented another nifty feature: The observations made by the new system can be controlled from a smartphone interface. Bretz and Dorner have successfully encapsulated and automated the complex functionality of the FACT technology like in a Swiss pocket knife.

Where the new technology is used

The new technology will also be used in the MAGIC telescope system of the European Northern Observatory on La Palma. The team of Karl Mannheim, head of the astronomy department in Würzburg, is instrumental in operating MAGIC. "The new camera has become an established technology," the professor says. He believes that it will also be used in future large-scale machines such as the Cherenkov Telescope Array (CTA) which is set to take up operation in 2020.

And maybe, one day, FACT will also help realise the idea that had bothered the two laureates years ago already: to create a network of Cherenkov telescopes distributed all over the planet to close the data gaps resulting from Earth's rotation. When the sun is about to rise in La Palma, first the telescopes in America would take over followed by those in Asia until the sun goes down again on La Palma.

Vita of the laureates

Thomas Bretz, born in Frankfurt am Main in 1974, studied physics at TU Munich. In 2000, he joined Karl Mannheim's team at the university observatory in Göttingen. Two years later, the team relocated to the University of Würzburg where he met Daniela Dorner, who studied physics at the time. Inspired by Bretz, she joined projects dealing with the MAGIC telescope system. As a postdoc, he joined the École Polytechnique in Lausanne followed by ETH Zurich in 2012. In 2014, he became a junior professor at RWTH Aachen.

Born in 1979 Daniela Dorner from Amberg studied physics in Bayreuth and Würzburg. She completed her doctoral thesis in Würzburg in 2008. As a postdoc, she joined the ISDC Data Centre for Astrophysics in Geneva where she participated in a joint project of ETH Zurich and the University of Geneva. She returned to Würzburg in 2012 where she has been doing research in a joint project funded by the Federal Ministry of Education and Research (BMBF). Daniela Dorner likes to spend her free time with creative writing, doing collages and playing badminton.


Weitere Informationen:

http://www.astro.uni-wuerzburg.de/en  Visit homepage of the Astronomy Department

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>