Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breaking symmetry in the strong force

Supercomputers allow researchers to calculate symmetry violations in the strong interaction that holds atoms together

An international research team has reconciled two theories that explain the properties of the pion. The work is important because this subatomic particle plays a key role in the strong interaction—the fundamental force that holds atomic nuclei together.

The pion consists of a quark and an anti-quark, meaning it is classified as a hadron alongside protons and neutrons—but it has very different properties.

“One puzzle was that the pion is much lighter than other hadrons,” says scientist Sinya Aoki, based at the University of Tsukuba and the RIKEN BNL Center in New York.

The unexpectedly light pion mass was first explained by Yoichiro Nambu, who received the Nobel Prize for Physics in 2008. He realized that the strong interaction usually obeys a rule called ‘chiral symmetry’, but in a vacuum this rule can be broken.

“A quark has spin, or self-rotation, which can be in a left-handed or right-handed direction,” Aoki explains. “The chiral symmetry means that left-handed quarks and right-handed quarks never mix with each other. If this chiral symmetry is spontaneously broken, a pion appears to be massless. This, however, is not true if the quarks have mass.”

In fact, pions have a tiny mass due to the small but non-zero quark mass, irrespective of the large energy scale of the strong interaction.

Effects of quark mass in the presence of spontaneous chiral symmetry breaking have been illustrated using a tool called chiral perturbation theory. However it is important to show that the symmetry breaking can occur in the fundamental theory of the strong interaction, called quantum chromodynamics (QCD), which governs the behavior of quarks and gluons.

Until now it has been difficult for QCD to verify the small pion mass owing to problems such as ‘sea quarks’—virtual quark-antiquark pairs that pop in and out of existence in the gluon field.

In their latest work1, Aoki and co-workers used powerful supercomputers (Fig. 1) at the High Energy Accelerator Research Organization (KEK) in Tsukuba to run QCD numerically on a lattice. They calculated exactly how the mass and decay properties of a pion depend on the quark mass.

They have shown for the first time that QCD provides the same results as chiral perturbation theory, if one assumes a small enough quark mass. Aoki is delighted with the success.

“Our results not only show that the lattice QCD and the chiral perturbation theory agree, but also prove that Nambu's chiral symmetry breaking indeed occurs in QCD.”


1. Noaki, J., Aoki, S., Chiu, T.W., Fukaya, H., Hashimoto, S., Hsieh, T.H., Kaneko, T., Matsufuru, H., Onogi, T., Shintani, E. & Yamada, N. Convergence of the chiral expansion in two-flavor lattice QCD. Physical Review Letters 101, 202004 (2008).

The corresponding author for this highlight is based at the RIKEN Theory Group

Saeko Okada | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>