Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking symmetry in the strong force

14.04.2009
Supercomputers allow researchers to calculate symmetry violations in the strong interaction that holds atoms together

An international research team has reconciled two theories that explain the properties of the pion. The work is important because this subatomic particle plays a key role in the strong interaction—the fundamental force that holds atomic nuclei together.

The pion consists of a quark and an anti-quark, meaning it is classified as a hadron alongside protons and neutrons—but it has very different properties.

“One puzzle was that the pion is much lighter than other hadrons,” says scientist Sinya Aoki, based at the University of Tsukuba and the RIKEN BNL Center in New York.

The unexpectedly light pion mass was first explained by Yoichiro Nambu, who received the Nobel Prize for Physics in 2008. He realized that the strong interaction usually obeys a rule called ‘chiral symmetry’, but in a vacuum this rule can be broken.

“A quark has spin, or self-rotation, which can be in a left-handed or right-handed direction,” Aoki explains. “The chiral symmetry means that left-handed quarks and right-handed quarks never mix with each other. If this chiral symmetry is spontaneously broken, a pion appears to be massless. This, however, is not true if the quarks have mass.”

In fact, pions have a tiny mass due to the small but non-zero quark mass, irrespective of the large energy scale of the strong interaction.

Effects of quark mass in the presence of spontaneous chiral symmetry breaking have been illustrated using a tool called chiral perturbation theory. However it is important to show that the symmetry breaking can occur in the fundamental theory of the strong interaction, called quantum chromodynamics (QCD), which governs the behavior of quarks and gluons.

Until now it has been difficult for QCD to verify the small pion mass owing to problems such as ‘sea quarks’—virtual quark-antiquark pairs that pop in and out of existence in the gluon field.

In their latest work1, Aoki and co-workers used powerful supercomputers (Fig. 1) at the High Energy Accelerator Research Organization (KEK) in Tsukuba to run QCD numerically on a lattice. They calculated exactly how the mass and decay properties of a pion depend on the quark mass.

They have shown for the first time that QCD provides the same results as chiral perturbation theory, if one assumes a small enough quark mass. Aoki is delighted with the success.

“Our results not only show that the lattice QCD and the chiral perturbation theory agree, but also prove that Nambu's chiral symmetry breaking indeed occurs in QCD.”

Reference

1. Noaki, J., Aoki, S., Chiu, T.W., Fukaya, H., Hashimoto, S., Hsieh, T.H., Kaneko, T., Matsufuru, H., Onogi, T., Shintani, E. & Yamada, N. Convergence of the chiral expansion in two-flavor lattice QCD. Physical Review Letters 101, 202004 (2008).

The corresponding author for this highlight is based at the RIKEN Theory Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/669/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>