Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the mucus barrier unveils cancer cell secrets

17.03.2011
Measuring the mechanical strength of cancer cell mucus layers provides clues about better ways to treat cancer, and also suggests why some cancer cells are more resistant to drugs than others, according to Kai-tak Wan, associate professor of engineering at Northeastern University, Boston, Mass.

According to Wan, healthy tissues naturally secrete mucus to protect against infection. Cancer cells, however, produce far more mucus than healthy cells.

Mucus consists of protein "stalks" attached to sugar sidechains, or "branches." This tangled brush forms a physical barrier. When over-expressed, it can prevent drugs from reaching the cancer cells beneath. Over-expressed mucus also makes it easier for cancer cells to break away from surrounding cells and move through the body, or metastasize.

Wan's research partner, Robert B. Campbell, an associate professor of pharmaceutical sciences at Massachusetts College of Pharmacy and Health Sciences, Worcester, Mass., is investigating the use of chemical agents that limit the formation of this tangled mucus barrier so medicines can get through.

To determine how well those agents work, Wan used the nanoscale tip of an atomic force microscope to push against the mucus barrier. The less resistance it encountered, the less tangled the barrier.

Wan found that suppressing the formation of mucus sidechains significantly reduced the energy needed to pierce the mucus barrier in lung, breast, colorectal, pancreatic, and wild type (natural) ovarian cancer cells.

Yet the treatment registered barely any change in multi-drug resistant ovarian cancer cells. No one understands how those cells resist drugs that ordinarily kill wild type ovarian cancer.

Wan's research points to an important difference. The mucus layer formed by the two types of cells reacts differently to the same chemical treatment.

"How this phenomenon is related to biochemistry is unknown at this stage, but it tells us what we should be looking at in future research," Wan said about his and Campbell's conclusions.

The article, "Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery" by Xin Wang, Aalok A. Shah, Robert B. Campbell, and Kai-tak Wan appears in the journal Applied Physics Letters. See: http://link.aip.org/link/applab/v97/i26/p263703/s1

Journalists may request a free PDF of this article by contacting cblue@aip.org

ABOUT APPLIED PHYSICS LETTERS

Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>