Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking barriers with nanoscale lasers

30.07.2009
Demonstration of thinnest semiconductor laser holds promise of better computers and Internet access

We could soon see the potential of laser technology expand dramatically.

Ways to make lasers smaller are being discovered through collaborative efforts of researchers at Arizona State University and Technical University of Eindhoven in the Netherlands. The work opens up possibilities for using nanoscale lasers to significantly improve the performance of computers and speed up Internet access.

The teams' advances in breaking through previous limitations on how small lasers can be made are reported in a recent edition of the online science and engineering journal Optics Express.

Authors of the report include professor Martin Hill, who leads the Eindhoven team, and ASU team leader Cun-Zheng Ning, a professor in the School of Electrical, Computer and Energy Engineering in ASU's Ira A. Fulton Schools of Engineering.

Lasers once were the stuff largely of science fiction. Today they are everywhere in the world of electronics. They are essential components of CD and DVD players. They are used in the automatic check-out stations in supermarkets.

Small lasers are used in technology that enables communications across continents, and soon nanolasers will be used for communications between the parts inside your computer.

Engineers have been trying to make lasers smaller because it would enable the devices to be more effectively integrated with small electronics components. The more lasers that can be used with these components, the faster electronic devices could perform. This would do things such as speed up the workings of your computer and Internet access.

The size of lasers in any one dimension (for example, thickness) has been thought to be limited to one-half of the wavelength involved.

For instance, for lasers used in optical communications the required wavelength is about 1,500 nanometers, so a 750-nanometer laser was thought to be the smallest a laser could be made for optical communications.

In an optically denser medium such as a semiconductor, this limit is reduced by a factor of the index of refraction (expressed mathematically as ~3.0) of a semiconductor – in this case to about 250 nanometers.

The limit is sometimes called the diffraction limit, a property associated with any wave, such as a beam of light. Current theory says you can't make a laser smaller than this diffraction limit – or smaller than 250 nanometers for a semiconductor laser for communications devices.

The research teams at ASU and Eindhoven are showing there are ways around this supposed limit, Ning says.

One way is by the use of a combination of semiconductors and metals such as gold and silver.

"It turns out that the electrons excited in metals can help you confine a light in a laser to sizes smaller than that required by the diffraction limit," Ning explains. "Eventually, we were able to make a laser as thin as about one quarter of the wavelength or smaller, as opposed to one half."

Ning and Hill have achieved something like that by using a "metal-semiconductor-metal sandwich structure," in which the semiconductor is as thin as 80 nanometers and is sandwiched between 20-nanometer dielectric layers before putting metal layers on each side.

They have demonstrated that such a semiconductor/dielectric layer, thinner than the diffraction limit, and squeezed between metal layers, can actually emit laser light – a laser with the smallest thickness of any ever produced. The structure, however, has worked only in a low-temperature operating environment. The next step is to achieve the same laser light emission at room temperature.

Researchers worldwide are interested in integrating such metallic structures with semiconductors to produce smaller nanolasers because of the promise of applications for smaller lasers in a wide range of technologies.

"This is the first time that anyone has shown that this limit to the size of nanolasers can be broken," Ning says. "Beating this limit is significant. It opens up diverse possibilities for improving integrated communications devices, single molecule detection and medical imaging."

Nanoscale lasers can also be integrated with other biomedical diagnostic tools, making them work faster and more efficiently, he says.

These advances also represent a major step in nanophotonics – the study of the behavior of light on the nanometer scale and the ability to fabricate devices in nanoscale.

"Nanolasers can be used for many applications, but the most exciting possibilities are for communications on a central processing unit (CPU) of a computer chip," Ning says.

As computers get faster, the communication between different parts in a computer creates a processing bottleneck, he explains.

Since a signal can be transmitted between computer components much faster by a light wave emitted by a laser than by metal wires, optical communication (communication using light) is "the ultimate solution for improving on semiconductor chip communications," Ning says.

"But before this becomes a reality, lasers have to be made small enough to be integrated with small electronics components," he says. "This is why the Department of Defense and chip manufacturers such as Intel are working on optical solutions for on-chip communications."

Research in this field in the United States is being funded by the Defense Advanced Research Projects Agency (DARPA), the central research and development organization for the U.S. Department of Defense. The agency is supporting a collaborative team partnering researchers at ASU, the University of California at Berkeley and the University of Illinois, Urbana-Champaign.

ASU's collaboration with Hill's team at Eindhoven happened by coincidence, Ning says.

"We discovered we were working on the same problems and trying to achieve similar goals using similar ideas," he says. "So the partnership developed."

The Optics Express article can be found at http://www.opticsinfobase.org/DirectPDFAccess/0A7B4D8E-BDB9-137E-C5667E774627D931_182907.pdf?da=1&id=182907&seq=0&CFID=28345599&CFTOKEN=83759966

For more information on Ning's research group, visit the web site http://nanophotonics.asu.edu/

SOURCE:
Cun-Zheng Ning, cning@asu.edu
Professor
School of Electrical, Computer and Energy Engineering
MEDIA CONTACT:
Joe Kullman, joe.kullman@asu.edu
(480) 965-8122 direct line
(480) 773-1364 mobile
Ira A. Fulton School of Engineering
Arizona State University
Tempe, Arizona USA
http://engineering.asu.edu/

Joe Kullman | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>