Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bound Neutrons Pave Way to Free Ones

08.02.2011
A study of bound protons and neutrons conducted at the Department of Energy's Thomas Jefferson National Accelerator Facility has allowed scientists, for the first time, to extract information through experimentation about the internal structure of free neutrons, without the assistance of a theoretical model. The result was published in the Feb. 4 issue of Physical Review Letters.

The major hurdle for scientists who study the internal structure of the neutron is that most neutrons are bound up inside the nucleus of atoms to protons. In nature, a free neutron lasts for only a few minutes, while in the nucleus, neutrons are always encumbered by the ubiquitous proton.

To tease out a description of a free neutron, a group of scientists compared data collected at Jefferson Lab and the SLAC National Accelerator Laboratory that detail how bound protons and neutrons in the nucleus of the atom display two very different effects. Both protons and neutrons are referred to as nucleons.

"Both effects are due to the nucleons behaving like they are not free," says Doug Higinbotham, a Jefferson Lab staff scientist.

Nucleons appear to differ when they are tightly bound in heavier nuclei versus when they are loosely bound in light nuclei. In the first effect, experiments have shown that nucleons tightly bound in a heavy nucleus pair up more often than those loosely bound in a light nucleus.

"The first thing was the probability of finding two nucleons close together in the nucleus, what we call a short-range correlation," says Larry Weinstein, a professor at Old Dominion University. "And the probability that the two nucleons are in a short-range correlation increases as the nucleus gets heavier."

Meanwhile, other experiments have shown a clear difference in how the proton's building blocks, called quarks, are distributed in heavy nuclei versus light nuclei. This difference is called the EMC Effect.

"People were measuring and discussing the EMC effect. And people were discussing things about the short-range correlations effect. Nobody bothered to look to see if there's any connection between them," adds Eliezer Piasetzky, a professor at Tel Aviv University in Israel.

When the group combined the data from a half-dozen experiments regarding these two different effects on one graph, they found that the two effects were correlated.

"Take a quantity that tells you how strong the EMC Effect is. And then take another quantity that tells you how many short-range correlations you have," Higinbotham explains. "And you see that when one is big, the other one is big. When one is small, the other one is small."

The scientists say that it's unlikely that one effect causes the other. Rather, the data shows that there is a common cause for both.

"I think that we certainly agree that from the position picture, it's due to nucleons overlapping that is causing this. And in the momentum picture, it is the high-momentum nucleons that are causing this. And, of course, it's quantum mechanics, so choose your picture," Higinbotham explains.

The group says the common cause may have remained a mystery for so long, because while the two effects they are studying are obviously related when laid out on a graph, the connection was previously obscured by the different, yet related ways in which the two effects are studied.

"When you do a measurement for the EMC Effect, what you do is you look inside the nucleon. You break open the nucleon and see inside. What happens inside the nucleon is very different from the short-range correlations, which is what happens between two different nucleons," Piasetzky says.

"What's very new here is that we have linked two fields that were completely disconnected. So now you can start asking questions about what that connection can help us learn," Higinbotham says.

They say the next step is to further compare the data from all of the source experiments that they used in their analysis to see if data for one effect may now be used to learn something new about the other. Then, of course, they'd like to use the knowledge that the two effects are connected to design new experiments for shining a light on other secrets buried in the nucleus of the atom.

This work was supported in part by the DOE Office of Science, the National Science Foundation, the Israel Science Foundation, and the U.S.-Israeli Bi-National Science Foundation.

Jefferson Lab is managed and operated for the U.S. Department of Energy's Office of Science by Jefferson Science Associates, LLC, a joint venture between Southeastern Universities Research Association, Inc. and CSC Applied Technology Group, LLC.

Contact: Kandice Carter, Jefferson Lab Public Affairs, 757-269-7263, kcarter@jlab.org

For Further Reference:
SRC Paper: Probing Cold Dense Nuclear Matter
For non-scientists: Protons Pair Up With Neutrons
EMC Effect Paper: New Measurements of the European Muon Collaboration Effect in Very Light Nuclei

For non-scientists: Proton's party pals may alter its internal structure

Jefferson Lab is managed and operated for the U.S. Department of Energy's Office of Science by Jefferson Science Associates, LLC, a joint venture between Southeastern Universities Research Association, Inc. and CSC Applied Technologies, LLC.

Kandice Carter | EurekAlert!
Further information:
http://www.jlab.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>