Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bottom-up approach provides first characterization of pyroelectric nanomaterials

09.01.2013
By taking a "bottom-up" approach, researchers at the University of Illinois at Urbana-Champaign have observed for the first time that "size does matter" in regards "pyroelectricity"—the current/voltage developed in response to temperature fluctuations that enables technologies such as infrared sensors, night-vision, and energy conversion units, to name a few.

"Controlling and manipulating heat for applications such as waste heat energy harvesting, integrated cooling technologies, electron emission, and related functions is an exciting field of study today," explained Lane Martin, an assistant professor of materials science and engineering at Illinois. "Traditionally, these systems have relied on bulk materials, but future nanoscale devices will increasingly require ferroelectric thin films.

"Measuring the pyroelectric response of thin films is difficult and has restricted the understanding of the physics of pyroelectricity, prompting some to label it as 'one of the least-known properties of solid materials'," Martin added. "This work provides the most complete and detailed modeling and experimental study of this widely unknown region of materials and has direct implications for next generation devices."

Researchers found that reducing the dimensions of ferroelectrics increases their susceptibility to size- and strain-induced effects. The group's paper, "Effect of 90-degree domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films," appears in the journal Physical Review Letters.

"What we did in this work was to develop a new approach to utilize and understand a class of materials important for all of these applications," Martin said. "By moving to a 'bottom-up' approach that produces nanoscale versions of these materials as thin films, we have observed, for the first time, that certain features, namely domain walls, can be incredibly important and even dominate the temperature-dependent response and performance of these materials."

According to J. Karthik, the first author on the group's paper, thin-film epitaxy has been developed to provide a set of parameters (e.g., film composition, epitaxial strain, electrical boundary conditions, and thickness) that allow for precise control of ferroelectrics and has been instrumental in understanding the physics of dielectric and piezoelectric effects.

"We investigated the contribution of 90º domain walls and thermal expansion mismatch to pyroelectricity in ferroelectric PbZr0.2Ti0.8O3 thin films, a widely used material whose bulk ferroelectric and piezoelectric properties are well understood," Karthik explained. As part of this work, Martin's Prometheus research group developed and applied the first phenomenological models to include extrinsic and secondary contributions to pyroelectricity in polydomain films and predict significant extrinsic contributions (arising from the temperature-dependent motion of domain walls) and large secondary contributions (arising from thermal expansion mismatch between the film and the substrate).

"We have also developed and applied a new phase-sensitive pyroelectric current measurement process to measure thin films for the first time and reveal a dramatic increase in the pyroelectric coefficient with increasing fraction of in-plane oriented domains and thermal expansion mismatch consistent with these models," Karthik said.

"By establishing an understanding of the science of these effects, with models to predict their performance, and demonstrated techniques to fabricate and utilize these properties in nanoscale versions of these materials, their properties can be effectively integrated into existing electronics," Martin said.

This research was supported by the Office of Naval Research, the Army Research Office, and the Air Force Office of Scientific Research.

Lane Martin | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>