Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Bose-Einstein condensate of erbium produced

22.05.2012
Francesca Ferlaino’s research team at the University of Innsbruck is the first to successfully create a condensate of the exotic element erbium. The Innsbruck experimental physicists hold the world record in attaining the first Bose-Einstein condensates of different chemical elements.

Ultracold quantum gases have exceptional properties and offer an ideal system to study basic physical phenomena. By choosing erbium, the research team led by Francesca Ferlaino from the Institute of Experimental Physics, University of Innsbruck, selected a very exotic element, which due to its particular properties offers new and fascinating possibilities to investigate fundamental questions in quantum physics.

“Erbium is comparatively heavy and has a strongly magnetic character. These properties lead to an extreme dipolar behavior of quantum systems,” says Ferlaino. Together with her research group, she found a surprisingly simple way to deeply cool this complex element by means of laser and evaporative cooling techniques. At temperatures close to absolute zero, a cloud of about 70,000 erbium atoms forms a magnetic Bose-Einstein condensate. In a condensate, the particles lose their individual properties and synchronize their behavior.

“Experiments with erbium enable us to gain new insights into the complex interaction processes of strongly correlated systems and, in particular, they offer new starting points to study quantum magnetism with cold atoms,” says Francesca Ferlaino. The young scientist was awarded the Austrian START prize in 2009 and she received an ERC (European Research Council) Starting Grant in 2010.

“With attaining the Bose-Einstein condensate barely a year after we started, we have already achieved one of the most important goals of the project,” says a proud Francesca Ferlaino. “This shows the importance of grants for young scientists and how crucial the support from the University of Innsbruck and the Institute for Experimental Physics has been for me and my team.” Also Nobel laureate Eric Cornell congratulated the Innsbruck researchers: “Lovely new baby. Its parents must be very proud!”

Quantum capital Innsbruck adds another superlative

Cesium, strontium and erbium are the three chemical elements that the physicists in Innsbruck have condensated successfully in the last few years. An important breakthrough was made by Rudolf Grimm and his research group in 2002 when they achieved condensation of cesium, which led to numerous scientific findings in the years to follow. START awardee Florian Schreck, a member of Rudolf Grimm’s research group, was the first to realize a condensate of strontium in 2009. And now Francesca Ferlaino accomplished this feat with the element erbium.

Until now a total of 13 elements have been condensated worldwide. Ten of these condensates were created by ten different international research groups. In 2001 Eric Cornell, Wolfgang Ketterle and Carl Wieman were awarded the Nobel Prize in physics for producing the first Bose-Einstein condensates. The new condensate of erbium, now produced for the first time in Innsbruck, is an excellent model system for miming fascinating effects arising from long-range interaction. This type of interaction is, for instance, at the basis of complex dynamics present in nature, such as occurring in geophysical vortices, in ferrofluids or in proteins while folding.

Publication: Bose-Einstein Condensation of Erbium. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino. Phys. Rev. Lett. 108, 210401 (2012)

DOI: 10.1103/PhysRevLett.108.210401, http://prl.aps.org/abstract/PRL/v108/i21/e210401

Contacts:

Univ.-Prof. Dr. Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507-6340
Email: francesca.ferlaino@uibk.ac.at
Dr. Christian Flatz
Public Relations Office
University of Innsbruck
Phone: +43 676 872532022
Email: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://prl.aps.org/toc/PRL/v108/i21
http://physics.aps.org/articles/v5/58

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>