Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Bose-Einstein condensate of erbium produced

22.05.2012
Francesca Ferlaino’s research team at the University of Innsbruck is the first to successfully create a condensate of the exotic element erbium. The Innsbruck experimental physicists hold the world record in attaining the first Bose-Einstein condensates of different chemical elements.

Ultracold quantum gases have exceptional properties and offer an ideal system to study basic physical phenomena. By choosing erbium, the research team led by Francesca Ferlaino from the Institute of Experimental Physics, University of Innsbruck, selected a very exotic element, which due to its particular properties offers new and fascinating possibilities to investigate fundamental questions in quantum physics.

“Erbium is comparatively heavy and has a strongly magnetic character. These properties lead to an extreme dipolar behavior of quantum systems,” says Ferlaino. Together with her research group, she found a surprisingly simple way to deeply cool this complex element by means of laser and evaporative cooling techniques. At temperatures close to absolute zero, a cloud of about 70,000 erbium atoms forms a magnetic Bose-Einstein condensate. In a condensate, the particles lose their individual properties and synchronize their behavior.

“Experiments with erbium enable us to gain new insights into the complex interaction processes of strongly correlated systems and, in particular, they offer new starting points to study quantum magnetism with cold atoms,” says Francesca Ferlaino. The young scientist was awarded the Austrian START prize in 2009 and she received an ERC (European Research Council) Starting Grant in 2010.

“With attaining the Bose-Einstein condensate barely a year after we started, we have already achieved one of the most important goals of the project,” says a proud Francesca Ferlaino. “This shows the importance of grants for young scientists and how crucial the support from the University of Innsbruck and the Institute for Experimental Physics has been for me and my team.” Also Nobel laureate Eric Cornell congratulated the Innsbruck researchers: “Lovely new baby. Its parents must be very proud!”

Quantum capital Innsbruck adds another superlative

Cesium, strontium and erbium are the three chemical elements that the physicists in Innsbruck have condensated successfully in the last few years. An important breakthrough was made by Rudolf Grimm and his research group in 2002 when they achieved condensation of cesium, which led to numerous scientific findings in the years to follow. START awardee Florian Schreck, a member of Rudolf Grimm’s research group, was the first to realize a condensate of strontium in 2009. And now Francesca Ferlaino accomplished this feat with the element erbium.

Until now a total of 13 elements have been condensated worldwide. Ten of these condensates were created by ten different international research groups. In 2001 Eric Cornell, Wolfgang Ketterle and Carl Wieman were awarded the Nobel Prize in physics for producing the first Bose-Einstein condensates. The new condensate of erbium, now produced for the first time in Innsbruck, is an excellent model system for miming fascinating effects arising from long-range interaction. This type of interaction is, for instance, at the basis of complex dynamics present in nature, such as occurring in geophysical vortices, in ferrofluids or in proteins while folding.

Publication: Bose-Einstein Condensation of Erbium. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino. Phys. Rev. Lett. 108, 210401 (2012)

DOI: 10.1103/PhysRevLett.108.210401, http://prl.aps.org/abstract/PRL/v108/i21/e210401

Contacts:

Univ.-Prof. Dr. Francesca Ferlaino
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507-6340
Email: francesca.ferlaino@uibk.ac.at
Dr. Christian Flatz
Public Relations Office
University of Innsbruck
Phone: +43 676 872532022
Email: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://prl.aps.org/toc/PRL/v108/i21
http://physics.aps.org/articles/v5/58

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>