Boiling breakthrough: Nano-coating doubles rate of heat transfer

Pool boiling is the most common and familiar method of heating a container's contents, and is a remarkably efficient heat transfer method. The transfer of heat in this case is referred to as the “heat flux.” There exists, however, a critical point at which a solid surface gets too hot and pool-boiling efficiency is lost.

“Delaying the critical flux could play an important role in advancing thermal management of electronics as well as improving the efficiency of a number of energy systems,” says Bo Feng, Ph.D., the Georgia Tech researcher leading this project.

In boiling, bubbles carry away large amounts of heat from solid surfaces, but the bubbles also act as an insulator, preventing the liquid from rewetting the surface and thereby interrupting heat transfer. The alumina coating – only a few hundreds of atoms thick (1/1,000 the thickness of a human hair) – has a high affinity to water and, as a result, facilitates the rapid rewetting of the solid surface.

“This is the primary reason for the enhancement of heat transfer,” says Feng. An atomic layer deposition technique was used to control the thickness. By achieving such a thin coating, the additional layer of alumina did not appreciably increase thermal resistance, but it did increase the overall heat transfer.

“The potential contribution of this investigation lies in tailoring the wettability of surfaces at the nanometer scale, thereby greatly increasing the heat transfer during pool boiling,” adds G.P. “Bud” Peterson, Ph.D., director of Georgia Tech's Two-Phase Heat Transfer Lab. “This is especially promising for applications where the implementation of nanotube or nanowire arrays are possible.”

Nanotube and nanowire arrays are another effective way to enhance pool boiling heat transfer. Combining these two techniques – nanotube and/or nanowire arrays and nano-coating by atomic layer deposition – may increase pool-boiling efficiency even further.

Article: “Enhancement of Critical Heat Flux in Pool Boiling Using Atomic Layer Deposition of Alumina” is published in Applied Physics Letters.

Authors: Bo Feng (1), Keith Weaver (1), and G. P. Peterson (1).

(1) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga.

Media Contact

Charles E. Blue EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors