Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many bodies make 1 coherent burst of light

31.01.2012
Rice University researchers first to see superfluorescence from solid-state material

In a flash, the world changed for Tim Noe – and for physicists who study what they call many-body problems.

The Rice University graduate student was the first to see, in the summer of 2010, proof of a theory that solid-state materials are capable of producing an effect known as superfluorescence.

That can only happen when "many bodies" – in this case, electron-hole pairs created in a semiconductor – decide to cooperate.

Noe, a student of Rice physicist Junichiro Kono, and their research team used high-intensity laser pulses, a strong magnetic field and very cold temperatures to create the conditions for superfluorescence in a stack of 15 undoped quantum wells. The wells were made of indium, gallium and arsenic and separated by barriers of gallium-arsenide (GaAs). The researchers' results were reported this week in the journal Nature Physics.

Noe spent weeks at the only facility with the right combination of gear to carry out such an experiment, the National High Magnetic Field Laboratory at Florida State University. There, he placed the device in an ultracold (as low as 5 kelvins) chamber, pumped up the magnetic field (which effectively makes the "many body" particles – the electron-hole pairs – more sensitive and controllable) and fired a strong laser pulse at the array.

"When you shine light on a semiconductor with a photon energy larger than the band gap, you can create electrons in the conduction band and holes in the valence band. They become conducting," said Kono, a Rice professor of electrical and computer engineering and in physics and astronomy. "The electrons and holes recombine – which means they disappear – and emit light. One electron-hole pair disappears and one photon comes out. This process is called photoluminescence."

The Rice experiment acted just that way, but pumping strong laser light into the layers created a cascade among the quantum wells. "What Tim discovered is that in these extreme conditions, with an intense pulse of light on the order of 100 femtoseconds (quadrillionths of a second), you create many, many electron-hole pairs. Then you wait for hundreds of picoseconds (mere trillionths of a second) and a very strong pulse comes out," Kono said.

In the quantum world, that's a long gap. Noe attributes that "interminable" wait of trillionths of a second to the process going on inside the quantum wells. There, the 8-nanometer-thick layers soaked up energy from the laser as it bored in and created what the researchers called a magneto-plasma, a state consisting of a large number of electron-hole pairs. These initially incoherent pairs suddenly line up with each other.

"We're pumping (light) to where absorption's only occurring in the GaAs layers," Noe said. "Then these electrons and holes fall into the well, and the light hits another GaAs layer and another well, and so on. The stack just increases the amount of light that's absorbed." The electrons and holes undergo many scattering processes that leave them in the wells with no coherence, he said. But as a result of the exchange of photons from spontaneous emission, a large, macroscopic coherence develops.

Like a capacitor in an electrical circuit, the wells become saturated and, as the researchers wrote, "decay abruptly" and release the stored charge as a giant pulse of coherent radiation.

"What's unique about this is the delay time between when we create the population of electron-hole pairs and when the burst happens. Macroscopic coherence builds up spontaneously during this delay," Noe said.

Kono said the basic phenomenon of superfluorescence has been seen for years in molecular and atomic gases but wasn't sought in a solid-state material until recently. The researchers now feel such superfluorescence can be fine-tuned. "Eventually we want to observe the same phenomenon at room temperature, and at much lower magnetic fields, maybe even without a magnetic field," he said.

Even better, Kono said, it may be possible to create superfluorescent pulses with any desired wavelength in solid-state materials, powered by electrical rather than light energy.

The researchers said they expect the paper to draw serious interest from their peers in a variety of disciplines, including condensed matter physics; quantum optics; atomic, molecular and optical physics; semiconductor optoelectronics; quantum information science; and materials science and engineering.

There's much work to be done, Kono said. "There are several puzzles that we don't understand," he said. "One thing is a spectral shift over time: The wavelength of the burst is actually changing as a function of time when it comes out. It's very weird, and that has never been seen."

Noe also observed superfluorescent emission with several distinct peaks in the time domain, another mystery to be investigated.

The paper's co-authors include Rice postdoctoral researcher Ji-Hee Kim; former graduate student Jinho Lee and Professor David Reitze of the University of Florida, Gainesville; researchers Yongrui Wang and Aleksander Wojcik and Professor Alexey Belyanin of Texas A&M University; and Stephen McGill, an assistant scholar and scientist at the National High Magnetic Field Laboratory at Florida State University, Tallahassee.

Support for the research came from the National Science Foundation, with support for work at the National High Magnetic Field Laboratory from the state of Florida.

Read the abstract at http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys2207.html

Images for download:

media.rice.edu/images/media/NewsRels/0127_KONO.JPG

Rice University researchers have confirmed a long-held theory that solid-state materials are capable of producing an effect known as superfluorescence. From left: Rice physicist Junichiro Kono, postdoctoral researcher Ji-Hee Kim and graduate student Tim Noe. (Credit: Jeff Fitlow/Rice University)

media.rice.edu/images/media/NewsRels/0130_figfs.jpg

Pumping laser pulses into a stack of quantum wells created an effect physicists had long sought but not seen until now: superfluorescence in a solid-state material. The Rice University lab of physicist Junichiro Kono reported the results in Nature Physics. (Credit: Tim Noe/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>