Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Black holes turn up the heat for the Universe

HITS astrophysicists discover a new heating source in cosmological structure formation

So far, astrophysicists thought that super-massive black holes can only influence their immediate surroundings. A collaboration of scientists at the Heidelberg Institute for Theoretical Studies (HITS) and in Canada and the US now discovered that diffuse gas in the universe can absorb luminous gamma-ray emission from black holes, heating it up strongly.

A supermassive black hole is surrounded by a dust ring (torus). The collapse of gas onto the black hole launches an energetic jet of matter and radiation, which is transported over cosmological distances. A jet that is pointing into our direction is called a "blazar". copyright: ESA/NASA, the AVO project and Paolo Padovani

Simulated line forest of a quasar spectrum. The blue spectrum represents a universe without blazar heating, the red one a universe with blazar heating. It is evident that the additional heating process ionizes neutral hydrogen, implying less absorption of the UV light emitted by the quasar. Picture: HITS

This surprising result has important implications for the formation of structures in the universe. The results have just been published in "The Astrophysical Journal“ and „Monthly Notices of the Royal Astronomical Society”.

Every galaxy hosts a supermassive black hole at its center. Such black holes can emit high-energy gamma rays and are then called blazars. Whereas other radiation such as visible light and radio waves traverses the universe without problems, this is not the case for high-energy gamma rays. This particular radiation interacts with the optical light that is emitted by galaxies, transforming it into the elementary particles electrons and positrons.

Initially, these elementary particles move almost at the speed of light. But as they are slowed down by the ambient diffuse gas, their energy is converted into heat, just like in other braking processes. As a result, the surrounding gas is heated efficiently. In fact, the temperature of the gas at mean density becomes ten times higher, and in underdense regions more than one hundred times higher than previously thought.

A Journey into the Cosmic Youth

"Blazars rewrite the thermal history of the universe", emphasizes Dr. Christoph Pfrommer (HITS), one of the authors. But how can this idea be tested? In the optical spectra of quasars there is a plethora of lines, called the "line forest". The forest originates from the absorption of ultra-violet light by neutral hydrogen in the young Universe. If the gas becomes hotter, weak lines in the forest are broadened. This effect represents an excellent opportunity to measure temperatures in the early Universe, while it was still growing up.

The astrophysicists at HITS checked this newly postulated heating process for the first time with detailed supercomputer simulations of the cosmological growth of structures. Surprisingly, the lines were broadened just enough so that their properties perfectly matched those of the observed lines. "This allows us to elegantly solve a long-standing problem with the quasar data", says Dr. Ewald Puchwein, who conducted the large simulations on the supercomputer at HITS.

How Black Holes Influence the Formation of Galaxies

What are the further consequences of this new heating process? The forest of lines in the quasar spectra originates from density fluctuations in the Universe. In the course of cosmic evolution, the densest fluctuations collapse to form galaxies and galaxy clusters, as observed in the local Universe. Diffuse gas that is too hot cannot collapse. Hence, the formation of dwarf galaxies is slowed or even entirely suppressed. This could be the key to the solution of another long-standing problem in the theory of galaxy formation: why do we observe fewer dwarf galaxies in the vicinity of the Milky Way and in the underdense regions than predicted by cosmological simulations?

Prof. Volker Springel, scientific group leader at HITS, explains: "The process of blazar heating is especially exciting since this single effect is able to simultaneously solve several different puzzles in cosmological structure formation." The group plans to further improve their simulation models for a still deeper understanding of the nature of blazar heating and its implications for today's Universe.

Press contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Tel.: +49-6221-533-245
Fax: +49-6221-533-298
Scientific contact:
Prof. Dr. Volker Springel
Heidelberg Institute for Theoretical Studies (HITS)
Tel: +49-6221-533-241
The series of scientific articles:
The Lyman-alpha forest in a blazar-heated Universe. E. Puchwein, C. Pfrommer, V. Springel, A. E. Broderick, and P. Chang, 2012, MNRAS, in print, arXiv:1107.3837

The Cosmological Impact of Luminous TeV Blazars III: Implications for Galaxy Clusters and the Formation of Dwarf Galaxies. C. Pfrommer, P. Chang, and A. E. Broderick, 2012, ApJ, in print, arXiv:1106.5505

The Cosmological Impact of Luminous TeV Blazars II: Rewriting the Thermal History of the Intergalactic Medium. P. Chang, A. E. Broderick, and C. Pfrommer, 2012, ApJ, in print, arXiv:1106.5504

The Cosmological Impact of Luminous TeV Blazars I: Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background. A. E. Broderick, P. Chang, and C. Pfrommer, 2012, ApJ, in print, arXiv:1106.5494

Dr. Peter Saueressig | idw
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>