Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First black holes may have incubated in giant, starlike cocoons

25.11.2009
The first large black holes in the universe likely formed and grew deep inside gigantic, starlike cocoons that smothered their powerful x-ray radiation and prevented surrounding gases from being blown away, says a new study led by the University of Colorado at Boulder.

The formation process involved two stages, said Mitchell Begelman, a professor and the chair of CU-Boulder's astrophysical and planetary sciences department. The predecessors to black hole formation, objects called supermassive stars, probably started forming within the first few hundred million years after the Big Bang some 14 billion years ago.

A supermassive star eventually would have grown to a huge size -- as much as tens of millions of times the mass of our sun -- and would have been short-lived, with its core collapsing in just in few million years, he said.

In the new study to be published in Monthly Notices of the Royal Astronomical Society in London, Begelman calculated how supermassive stars might have formed, as well as the masses of their cores. These calculations allowed him to estimate their subsequent size and evolution, including how they ultimately left behind "seed" black holes.

Begelman said the hydrogen-burning supermassive stars would had to have been stabilized by their own rotation or some other form of energy like magnetic fields or turbulence in order to facilitate the speedy growth of black holes at their centers. "What's new here is we think we have found a new mechanism to form these giant supermassive stars, which gives us a new way of understanding how big black holes may have formed relatively fast," said Begelman.

The main requirement for the formation of supermassive stars is the accumulation of matter at a rate of about one solar mass per year, said Begelman. Because of the tremendous amount of matter consumed by supermassive stars, subsequent seed black holes that formed in their centers may have started out much bigger than ordinary black holes -- which are the mass of only a few Earth suns -- and subsequently grew much faster.

After the seed black holes formed, the process entered its second stage, which Begelman has dubbed the "quasistar" stage. In this phase, black holes grew rapidly by swallowing matter from the bloated envelope of gas surrounding them, which eventually inflated to a size as large as Earth's solar system and cooled at the same time, he said.

Once quasistars cooled past a certain point, radiation began escaping at such a high rate that it caused the gas envelope to disperse and left behind black holes up to 10,000 times or more the mass of Earth's sun, Begelman said. With such a big head start over ordinary black holes, they could have grown into supermassive black holes millions or billions of times the mass of the sun either by gobbling up gas from surrounding galaxies or merging with other black holes in extremely violent galactic collisions.

The quasistar phase was analyzed in a 2008 paper published by Begelman in collaboration with CU Professor Phil Armitage and Research Associate Elena Rossi.

"Until recently, the thinking by many has been that supermassive black holes got their start from the merging of numerous, small black holes in the universe," he said. "This new model of black hole development indicates a possible alternate route to their formation."

Black holes are extremely dense celestial objects believed to be formed by the collapse of stars and which have such a strong gravitational field that nothing, not even light, can escape. While black holes are not directly detectable by astronomers, the movement of stellar matter swirling around them and powerful jets of gas blasting outward provides evidence for their existence. Ordinary black holes are thought to be remnants of stars slightly larger than our sun that used up their fuel and died, he said.

The supermassive black holes created early in the history of the universe may have gone on to produce the phenomenon of quasars -- the very bright, energetic centers of distant galaxies that can be a trillion times brighter than our sun. There also is evidence that a supermassive black hole inhabits the center of every massive galaxy today, including our own Milky Way, said Begelman.

"Big black holes formed via these supermassive stars could have had a huge impact on the evolution of the universe, including galaxy formation," he said. Begelman is collaborating with University of Michigan astrophysicist Marta Volonteri, comparing the possible formation of supermassive black holes from supermassive stars and quasistars versus their creation by the merging of ordinary black holes left behind by the collapse of the universe's earliest stars.

Scientists may be able to use NASA's James Webb Space Telescope, slated for launch in 2013, to look back in time and hunt for the cocoon-like supermassive stars near the edges of the early universe, which would shine brightly in the near infrared portion of the electromagnetic spectrum, said Begelman.

Begelman has authored several books, including "Gravity's Fatal Attraction" with Martin Rees, a member of the British House of Lords and president of the Royal Society of London and who is the British Astronomer Royal, in 1996. The second edition of the book is due out early next year. Begelman also authored "Turn Right at Orion: Travels Through the Cosmos" in 2000.

Mitchell Begelman | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>