Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black Holes Grow Big by Eating Stars

03.04.2012
Most galaxies, including the Milky Way, have a supermassive black hole at their center weighing millions to billions of suns. But how do those black holes grow so hefty? Some theories suggest they were born large. Others claim they grew larger over time through black hole mergers, or by consuming huge amounts of gas.
New research by astronomers at the University of Utah and the Harvard-Smithsonian Center for Astrophysics (CfA) shows that supermassive black holes can grow big by ripping apart double-star systems and swallowing one of the stars.

"Black holes are very efficient eating machines," said Scott Kenyon of the CfA. "They can double their mass in less than a billion years. That may seem long by human standards, but over the history of the Galaxy it's pretty fast."

"I believe this has got to be the dominant method for growing supermassive black holes," added lead author Benjamin Bromley of the University of Utah. The study was published in the April 2 online edition of The Astrophysical Journal Letters.

Their work follows up on the 2005 discovery, by a team of CfA astronomers led by Warren Brown, of hypervelocity stars - stars that were flung out of the galactic center by gravitational forces and are traveling fast enough to escape the Milky Way.

Hypervelocity stars originate from a binary star system that wanders too close to the Milky Way's central black hole. Tidal forces capture one star and eject the other. The star that is captured into orbit around the black hole later becomes fodder for the galactic monster.

"We put the numbers together for observed hypervelocity stars and other evidence, and found that the rate of binary encounters [with our galaxy's supermassive black hole] would mean most of the mass of the galaxy's black hole came from binary stars," Bromley says. "We estimated these interactions for supermassive black holes in other galaxies and found that they too can grow to billions of solar masses in this way."

As many as half of all stars are in binary pairs, so they are plentiful in the Milky Way and other galaxies.

The new study looked at each step in the process of a supermassive black hole eating binary stars, and calculated what would be required for the process to match observations. Their simulations accurately predicted the rate at which hypervelocity stars are produced (one every 1,000 to 100,000 years). The theory also fit the rate of "tidal disruption events" observed in other galaxies, which happen when stars are shredded and pulled into supermassive black holes.

Their theory shows that the Milky Way's supermassive black hole has doubled to quadrupled in mass during the past 5 billion to 10 billion years by eating stars.

"When we look at observations of how stars are accumulating in our galactic center, it's clear that much of the mass of the black hole likely came from binary stars that were torn apart," said Bromley.

This release is being issued jointly with the University of Utah.
Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Lee Siegel, Univ. of Utah
801-581-8993
lee.siegel@utah.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.utah.edu
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>