Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black Holes Grow Big by Eating Stars

03.04.2012
Most galaxies, including the Milky Way, have a supermassive black hole at their center weighing millions to billions of suns. But how do those black holes grow so hefty? Some theories suggest they were born large. Others claim they grew larger over time through black hole mergers, or by consuming huge amounts of gas.
New research by astronomers at the University of Utah and the Harvard-Smithsonian Center for Astrophysics (CfA) shows that supermassive black holes can grow big by ripping apart double-star systems and swallowing one of the stars.

"Black holes are very efficient eating machines," said Scott Kenyon of the CfA. "They can double their mass in less than a billion years. That may seem long by human standards, but over the history of the Galaxy it's pretty fast."

"I believe this has got to be the dominant method for growing supermassive black holes," added lead author Benjamin Bromley of the University of Utah. The study was published in the April 2 online edition of The Astrophysical Journal Letters.

Their work follows up on the 2005 discovery, by a team of CfA astronomers led by Warren Brown, of hypervelocity stars - stars that were flung out of the galactic center by gravitational forces and are traveling fast enough to escape the Milky Way.

Hypervelocity stars originate from a binary star system that wanders too close to the Milky Way's central black hole. Tidal forces capture one star and eject the other. The star that is captured into orbit around the black hole later becomes fodder for the galactic monster.

"We put the numbers together for observed hypervelocity stars and other evidence, and found that the rate of binary encounters [with our galaxy's supermassive black hole] would mean most of the mass of the galaxy's black hole came from binary stars," Bromley says. "We estimated these interactions for supermassive black holes in other galaxies and found that they too can grow to billions of solar masses in this way."

As many as half of all stars are in binary pairs, so they are plentiful in the Milky Way and other galaxies.

The new study looked at each step in the process of a supermassive black hole eating binary stars, and calculated what would be required for the process to match observations. Their simulations accurately predicted the rate at which hypervelocity stars are produced (one every 1,000 to 100,000 years). The theory also fit the rate of "tidal disruption events" observed in other galaxies, which happen when stars are shredded and pulled into supermassive black holes.

Their theory shows that the Milky Way's supermassive black hole has doubled to quadrupled in mass during the past 5 billion to 10 billion years by eating stars.

"When we look at observations of how stars are accumulating in our galactic center, it's clear that much of the mass of the black hole likely came from binary stars that were torn apart," said Bromley.

This release is being issued jointly with the University of Utah.
Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Lee Siegel, Univ. of Utah
801-581-8993
lee.siegel@utah.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.utah.edu
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>